Spaces:
Running
on
Zero
Running
on
Zero
import train | |
import os | |
import time | |
import csv | |
import sys | |
import warnings | |
import random | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.utils.tensorboard import SummaryWriter | |
from torch.nn.parallel import DistributedDataParallel as DDP | |
import numpy as np | |
import time | |
import pprint | |
from loguru import logger | |
from utils import rotation_conversions as rc | |
import smplx | |
from utils import config, logger_tools, other_tools, metric, data_transfer | |
from dataloaders import data_tools | |
from optimizers.optim_factory import create_optimizer | |
from optimizers.scheduler_factory import create_scheduler | |
from optimizers.loss_factory import get_loss_func | |
from dataloaders.data_tools import joints_list | |
import librosa | |
from diffusion.model_util import create_gaussian_diffusion | |
from diffusion.resample import create_named_schedule_sampler | |
from models.vq.model import RVQVAE | |
import pickle | |
from models.motionclip import get_model | |
import clip | |
class CustomTrainer(train.BaseTrainer): | |
''' | |
Multi-Modal AutoEncoder | |
''' | |
def __init__(self, args): | |
super().__init__(args) | |
self.args = args | |
self.joints = self.train_data.joints | |
self.ori_joint_list = joints_list[self.args.ori_joints] | |
self.tar_joint_list_face = joints_list["beat_smplx_face"] | |
self.tar_joint_list_upper = joints_list["beat_smplx_upper"] | |
self.tar_joint_list_hands = joints_list["beat_smplx_hands"] | |
self.tar_joint_list_lower = joints_list["beat_smplx_lower"] | |
self.joint_mask_face = np.zeros(len(list(self.ori_joint_list.keys()))*3) | |
self.joints = 55 | |
for joint_name in self.tar_joint_list_face: | |
self.joint_mask_face[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1 | |
self.joint_mask_upper = np.zeros(len(list(self.ori_joint_list.keys()))*3) | |
for joint_name in self.tar_joint_list_upper: | |
self.joint_mask_upper[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1 | |
self.joint_mask_hands = np.zeros(len(list(self.ori_joint_list.keys()))*3) | |
for joint_name in self.tar_joint_list_hands: | |
self.joint_mask_hands[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1 | |
self.joint_mask_lower = np.zeros(len(list(self.ori_joint_list.keys()))*3) | |
for joint_name in self.tar_joint_list_lower: | |
self.joint_mask_lower[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1 | |
self.tracker = other_tools.EpochTracker(["fid", "l1div", "bc", "rec", "trans", "vel", "transv", 'dis', 'gen', 'acc', 'transa', 'exp', 'lvd', 'mse', "cls", "rec_face", "latent", "cls_full", "cls_self", "cls_word", "latent_word","latent_self","predict_x0_loss"], [False,True,True, False, False, False, False, False, False, False, False, False, False, False, False, False, False,False, False, False,False,False,False]) | |
vq_model_module = __import__(f"models.motion_representation", fromlist=["something"]) | |
self.args.vae_layer = 2 | |
self.args.vae_length = 256 | |
self.args.vae_test_dim = 106 | |
self.vq_model_face = getattr(vq_model_module, "VQVAEConvZero")(self.args).to(self.rank) | |
other_tools.load_checkpoints(self.vq_model_face, "./datasets/hub/pretrained_vq/face_vertex_1layer_790.bin", args.e_name) | |
vq_type = self.args.vqvae_type | |
if vq_type=="vqvae": | |
self.args.vae_layer = 4 | |
self.args.vae_test_dim = 78 | |
self.vq_model_upper = getattr(vq_model_module, "VQVAEConvZero")(self.args).to(self.rank) | |
other_tools.load_checkpoints(self.vq_model_upper, args.vqvae_upper_path, args.e_name) | |
self.args.vae_test_dim = 180 | |
self.vq_model_hands = getattr(vq_model_module, "VQVAEConvZero")(self.args).to(self.rank) | |
other_tools.load_checkpoints(self.vq_model_hands, args.vqvae_hands_path, args.e_name) | |
self.args.vae_test_dim = 54 | |
self.args.vae_layer = 4 | |
self.vq_model_lower = getattr(vq_model_module, "VQVAEConvZero")(self.args).to(self.rank) | |
other_tools.load_checkpoints(self.vq_model_lower, args.vqvae_lower_path, args.e_name) | |
elif vq_type=="rvqvae": | |
args.num_quantizers = 6 | |
args.shared_codebook = False | |
args.quantize_dropout_prob = 0.2 | |
args.mu = 0.99 | |
args.nb_code = 512 | |
args.code_dim = 512 | |
args.code_dim = 512 | |
args.down_t = 2 | |
args.stride_t = 2 | |
args.width = 512 | |
args.depth = 3 | |
args.dilation_growth_rate = 3 | |
args.vq_act = "relu" | |
args.vq_norm = None | |
dim_pose = 78 | |
args.body_part = "upper" | |
self.vq_model_upper = RVQVAE(args, | |
dim_pose, | |
args.nb_code, | |
args.code_dim, | |
args.code_dim, | |
args.down_t, | |
args.stride_t, | |
args.width, | |
args.depth, | |
args.dilation_growth_rate, | |
args.vq_act, | |
args.vq_norm) | |
dim_pose = 180 | |
args.body_part = "hands" | |
self.vq_model_hands = RVQVAE(args, | |
dim_pose, | |
args.nb_code, | |
args.code_dim, | |
args.code_dim, | |
args.down_t, | |
args.stride_t, | |
args.width, | |
args.depth, | |
args.dilation_growth_rate, | |
args.vq_act, | |
args.vq_norm) | |
dim_pose = 54 | |
if args.use_trans: | |
dim_pose = 57 | |
self.args.vqvae_lower_path = self.args.vqvae_lower_trans_path | |
args.body_part = "lower" | |
self.vq_model_lower = RVQVAE(args, | |
dim_pose, | |
args.nb_code, | |
args.code_dim, | |
args.code_dim, | |
args.down_t, | |
args.stride_t, | |
args.width, | |
args.depth, | |
args.dilation_growth_rate, | |
args.vq_act, | |
args.vq_norm) | |
self.vq_model_upper.load_state_dict(torch.load(self.args.vqvae_upper_path)['net']) | |
self.vq_model_hands.load_state_dict(torch.load(self.args.vqvae_hands_path)['net']) | |
self.vq_model_lower.load_state_dict(torch.load(self.args.vqvae_lower_path)['net']) | |
self.vqvae_latent_scale = self.args.vqvae_latent_scale | |
self.vq_model_upper.eval().to(self.rank) | |
self.vq_model_hands.eval().to(self.rank) | |
self.vq_model_lower.eval().to(self.rank) | |
self.args.vae_test_dim = 61 | |
self.args.vae_layer = 4 | |
self.args.vae_test_dim = 330 | |
self.args.vae_layer = 4 | |
self.args.vae_length = 240 | |
self.vq_model_face.eval() | |
self.vq_model_upper.eval() | |
self.vq_model_hands.eval() | |
self.vq_model_lower.eval() | |
self.cls_loss = nn.NLLLoss().to(self.rank) | |
self.reclatent_loss = nn.MSELoss().to(self.rank) | |
self.vel_loss = torch.nn.L1Loss(reduction='mean').to(self.rank) | |
self.rec_loss = get_loss_func("GeodesicLoss").to(self.rank) | |
self.log_softmax = nn.LogSoftmax(dim=2).to(self.rank) | |
self.diffusion = create_gaussian_diffusion() | |
self.schedule_sampler_type = 'uniform' | |
self.schedule_sampler = create_named_schedule_sampler(self.schedule_sampler_type, self.diffusion) | |
self.mean = np.load(args.mean_pose_path) | |
self.std = np.load(args.std_pose_path) | |
self.use_trans = args.use_trans | |
if self.use_trans: | |
self.trans_mean = np.load(args.mean_trans_path) | |
self.trans_std = np.load(args.std_trans_path) | |
self.trans_mean = torch.from_numpy(self.trans_mean).cuda() | |
self.trans_std = torch.from_numpy(self.trans_std).cuda() | |
joints = [3,6,9,12,13,14,15,16,17,18,19,20,21] | |
upper_body_mask = [] | |
for i in joints: | |
upper_body_mask.extend([i*6, i*6+1, i*6+2, i*6+3, i*6+4, i*6+5]) | |
joints = list(range(25,55)) | |
hands_body_mask = [] | |
for i in joints: | |
hands_body_mask.extend([i*6, i*6+1, i*6+2, i*6+3, i*6+4, i*6+5]) | |
joints = [0,1,2,4,5,7,8,10,11] | |
lower_body_mask = [] | |
for i in joints: | |
lower_body_mask.extend([i*6, i*6+1, i*6+2, i*6+3, i*6+4, i*6+5]) | |
self.mean_upper = self.mean[upper_body_mask] | |
self.mean_hands = self.mean[hands_body_mask] | |
self.mean_lower = self.mean[lower_body_mask] | |
self.std_upper = self.std[upper_body_mask] | |
self.std_hands = self.std[hands_body_mask] | |
self.std_lower = self.std[lower_body_mask] | |
self.mean_upper = torch.from_numpy(self.mean_upper).cuda() | |
self.mean_hands = torch.from_numpy(self.mean_hands).cuda() | |
self.mean_lower = torch.from_numpy(self.mean_lower).cuda() | |
self.std_upper = torch.from_numpy(self.std_upper).cuda() | |
self.std_hands = torch.from_numpy(self.std_hands).cuda() | |
self.std_lower = torch.from_numpy(self.std_lower).cuda() | |
def inverse_selection(self, filtered_t, selection_array, n): | |
original_shape_t = np.zeros((n, selection_array.size)) | |
selected_indices = np.where(selection_array == 1)[0] | |
for i in range(n): | |
original_shape_t[i, selected_indices] = filtered_t[i] | |
return original_shape_t | |
def inverse_selection_tensor(self, filtered_t, selection_array, n): | |
selection_array = torch.from_numpy(selection_array).cuda() | |
original_shape_t = torch.zeros((n, 165)).cuda() | |
selected_indices = torch.where(selection_array == 1)[0] | |
for i in range(n): | |
original_shape_t[i, selected_indices] = filtered_t[i] | |
return original_shape_t | |
def _load_data(self, dict_data): | |
tar_pose_raw = dict_data["pose"] | |
tar_pose = tar_pose_raw[:, :, :165].to(self.rank) | |
tar_contact = tar_pose_raw[:, :, 165:169].to(self.rank) | |
tar_trans = dict_data["trans"].to(self.rank) | |
tar_trans_v = dict_data["trans_v"].to(self.rank) | |
tar_exps = dict_data["facial"].to(self.rank) | |
in_audio = dict_data["audio"].to(self.rank) | |
in_word = dict_data["word"].to(self.rank) | |
tar_beta = dict_data["beta"].to(self.rank) | |
tar_id = dict_data["id"].to(self.rank).long() | |
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], self.joints | |
tar_pose_jaw = tar_pose[:, :, 66:69] | |
tar_pose_jaw = rc.axis_angle_to_matrix(tar_pose_jaw.reshape(bs, n, 1, 3)) | |
tar_pose_jaw = rc.matrix_to_rotation_6d(tar_pose_jaw).reshape(bs, n, 1*6) | |
tar_pose_face = torch.cat([tar_pose_jaw, tar_exps], dim=2) | |
tar_pose_hands = tar_pose[:, :, 25*3:55*3] | |
tar_pose_hands = rc.axis_angle_to_matrix(tar_pose_hands.reshape(bs, n, 30, 3)) | |
tar_pose_hands = rc.matrix_to_rotation_6d(tar_pose_hands).reshape(bs, n, 30*6) | |
tar_pose_upper = tar_pose[:, :, self.joint_mask_upper.astype(bool)] | |
tar_pose_upper = rc.axis_angle_to_matrix(tar_pose_upper.reshape(bs, n, 13, 3)) | |
tar_pose_upper = rc.matrix_to_rotation_6d(tar_pose_upper).reshape(bs, n, 13*6) | |
tar_pose_leg = tar_pose[:, :, self.joint_mask_lower.astype(bool)] | |
tar_pose_leg = rc.axis_angle_to_matrix(tar_pose_leg.reshape(bs, n, 9, 3)) | |
tar_pose_leg = rc.matrix_to_rotation_6d(tar_pose_leg).reshape(bs, n, 9*6) | |
tar_pose_lower = tar_pose_leg | |
tar4dis = torch.cat([tar_pose_jaw, tar_pose_upper, tar_pose_hands, tar_pose_leg], dim=2) | |
if self.args.pose_norm: | |
tar_pose_upper = (tar_pose_upper - self.mean_upper) / self.std_upper | |
tar_pose_hands = (tar_pose_hands - self.mean_hands) / self.std_hands | |
tar_pose_lower = (tar_pose_lower - self.mean_lower) / self.std_lower | |
if self.use_trans: | |
tar_trans_v = (tar_trans_v - self.trans_mean)/self.trans_std | |
tar_pose_lower = torch.cat([tar_pose_lower,tar_trans_v], dim=-1) | |
latent_face_top = self.vq_model_face.map2latent(tar_pose_face) # bs*n/4 | |
latent_upper_top = self.vq_model_upper.map2latent(tar_pose_upper) | |
latent_hands_top = self.vq_model_hands.map2latent(tar_pose_hands) | |
latent_lower_top = self.vq_model_lower.map2latent(tar_pose_lower) | |
latent_in = torch.cat([latent_upper_top, latent_hands_top, latent_lower_top], dim=2)/self.args.vqvae_latent_scale | |
tar_pose_6d = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, 55, 3)) | |
tar_pose_6d = rc.matrix_to_rotation_6d(tar_pose_6d).reshape(bs, n, 55*6) | |
latent_all = torch.cat([tar_pose_6d, tar_trans, tar_contact], dim=-1) | |
style_feature = None | |
if self.args.use_motionclip: | |
motionclip_feat = tar_pose_6d[...,:22*6] | |
batch = {} | |
bs,seq,feat = motionclip_feat.shape | |
batch['x']=motionclip_feat.permute(0,2,1).contiguous() | |
batch['y']=torch.zeros(bs).int().cuda() | |
batch['mask']=torch.ones([bs,seq]).bool().cuda() | |
style_feature = self.motionclip.encoder(batch)['mu'].detach().float() | |
# print(tar_index_value_upper_top.shape, index_in.shape) | |
return { | |
"tar_pose_jaw": tar_pose_jaw, | |
"tar_pose_face": tar_pose_face, | |
"tar_pose_upper": tar_pose_upper, | |
"tar_pose_lower": tar_pose_lower, | |
"tar_pose_hands": tar_pose_hands, | |
'tar_pose_leg': tar_pose_leg, | |
"in_audio": in_audio, | |
"in_word": in_word, | |
"tar_trans": tar_trans, | |
"tar_exps": tar_exps, | |
"tar_beta": tar_beta, | |
"tar_pose": tar_pose, | |
"tar4dis": tar4dis, | |
"latent_face_top": latent_face_top, | |
"latent_upper_top": latent_upper_top, | |
"latent_hands_top": latent_hands_top, | |
"latent_lower_top": latent_lower_top, | |
"latent_in": latent_in, | |
"tar_id": tar_id, | |
"latent_all": latent_all, | |
"tar_pose_6d": tar_pose_6d, | |
"tar_contact": tar_contact, | |
"style_feature":style_feature, | |
} | |
def _g_training(self, loaded_data, use_adv, mode="train", epoch=0): | |
bs, n, j = loaded_data["tar_pose"].shape[0], loaded_data["tar_pose"].shape[1], self.joints | |
cond_ = {'y':{}} | |
cond_['y']['audio'] = loaded_data['in_audio'] | |
cond_['y']['word'] = loaded_data['in_word'] | |
cond_['y']['id'] = loaded_data['tar_id'] | |
cond_['y']['seed'] = loaded_data['latent_in'][:,:self.args.pre_frames] | |
cond_['y']['mask'] = (torch.zeros([self.args.batch_size, 1, 1, self.args.pose_length//self.args.vqvae_squeeze_scale]) < 1).cuda() | |
cond_['y']['style_feature'] = loaded_data['style_feature'] | |
x0 = loaded_data['latent_in'] | |
x0 = x0.permute(0, 2, 1).unsqueeze(2) | |
t, weights = self.schedule_sampler.sample(x0.shape[0], x0.device) | |
g_loss_final = self.diffusion.training_losses(self.model,x0,t,model_kwargs = cond_)["loss"].mean() | |
self.tracker.update_meter("predict_x0_loss", "train", g_loss_final.item()) | |
if mode == 'train': | |
return g_loss_final | |
def _g_test(self, loaded_data): | |
sample_fn = self.diffusion.p_sample_loop | |
mode = 'test' | |
bs, n, j = loaded_data["tar_pose"].shape[0], loaded_data["tar_pose"].shape[1], self.joints | |
tar_pose = loaded_data["tar_pose"] | |
tar_beta = loaded_data["tar_beta"] | |
tar_exps = loaded_data["tar_exps"] | |
tar_contact = loaded_data["tar_contact"] | |
tar_trans = loaded_data["tar_trans"] | |
in_word = loaded_data["in_word"] | |
in_audio = loaded_data["in_audio"] | |
in_x0 = loaded_data['latent_in'] | |
in_seed = loaded_data['latent_in'] | |
remain = n%8 | |
if remain != 0: | |
tar_pose = tar_pose[:, :-remain, :] | |
tar_beta = tar_beta[:, :-remain, :] | |
tar_trans = tar_trans[:, :-remain, :] | |
in_word = in_word[:, :-remain] | |
tar_exps = tar_exps[:, :-remain, :] | |
tar_contact = tar_contact[:, :-remain, :] | |
in_x0 = in_x0[:, :in_x0.shape[1]-(remain//self.args.vqvae_squeeze_scale), :] | |
in_seed = in_seed[:, :in_x0.shape[1]-(remain//self.args.vqvae_squeeze_scale), :] | |
n = n - remain | |
tar_pose_jaw = tar_pose[:, :, 66:69] | |
tar_pose_jaw = rc.axis_angle_to_matrix(tar_pose_jaw.reshape(bs, n, 1, 3)) | |
tar_pose_jaw = rc.matrix_to_rotation_6d(tar_pose_jaw).reshape(bs, n, 1*6) | |
tar_pose_face = torch.cat([tar_pose_jaw, tar_exps], dim=2) | |
tar_pose_hands = tar_pose[:, :, 25*3:55*3] | |
tar_pose_hands = rc.axis_angle_to_matrix(tar_pose_hands.reshape(bs, n, 30, 3)) | |
tar_pose_hands = rc.matrix_to_rotation_6d(tar_pose_hands).reshape(bs, n, 30*6) | |
tar_pose_upper = tar_pose[:, :, self.joint_mask_upper.astype(bool)] | |
tar_pose_upper = rc.axis_angle_to_matrix(tar_pose_upper.reshape(bs, n, 13, 3)) | |
tar_pose_upper = rc.matrix_to_rotation_6d(tar_pose_upper).reshape(bs, n, 13*6) | |
tar_pose_leg = tar_pose[:, :, self.joint_mask_lower.astype(bool)] | |
tar_pose_leg = rc.axis_angle_to_matrix(tar_pose_leg.reshape(bs, n, 9, 3)) | |
tar_pose_leg = rc.matrix_to_rotation_6d(tar_pose_leg).reshape(bs, n, 9*6) | |
tar_pose_lower = torch.cat([tar_pose_leg, tar_trans, tar_contact], dim=2) | |
tar_pose_6d = rc.axis_angle_to_matrix(tar_pose.reshape(bs, n, 55, 3)) | |
tar_pose_6d = rc.matrix_to_rotation_6d(tar_pose_6d).reshape(bs, n, 55*6) | |
latent_all = torch.cat([tar_pose_6d, tar_trans, tar_contact], dim=-1) | |
rec_all_face = [] | |
rec_all_upper = [] | |
rec_all_lower = [] | |
rec_all_hands = [] | |
vqvae_squeeze_scale = self.args.vqvae_squeeze_scale | |
roundt = (n - self.args.pre_frames * vqvae_squeeze_scale) // (self.args.pose_length - self.args.pre_frames * vqvae_squeeze_scale) | |
remain = (n - self.args.pre_frames * vqvae_squeeze_scale) % (self.args.pose_length - self.args.pre_frames * vqvae_squeeze_scale) | |
round_l = self.args.pose_length - self.args.pre_frames * vqvae_squeeze_scale | |
for i in range(0, roundt): | |
in_word_tmp = in_word[:, i*(round_l):(i+1)*(round_l)+self.args.pre_frames * vqvae_squeeze_scale] | |
in_audio_tmp = in_audio[:, i*(16000//30*round_l):(i+1)*(16000//30*round_l)+16000//30*self.args.pre_frames * vqvae_squeeze_scale] | |
in_id_tmp = loaded_data['tar_id'][:, i*(round_l):(i+1)*(round_l)+self.args.pre_frames] | |
in_seed_tmp = in_seed[:, i*(round_l)//vqvae_squeeze_scale:(i+1)*(round_l)//vqvae_squeeze_scale+self.args.pre_frames] | |
in_x0_tmp = in_x0[:, i*(round_l)//vqvae_squeeze_scale:(i+1)*(round_l)//vqvae_squeeze_scale+self.args.pre_frames] | |
mask_val = torch.ones(bs, self.args.pose_length, self.args.pose_dims+3+4).float().cuda() | |
mask_val[:, :self.args.pre_frames, :] = 0.0 | |
if i == 0: | |
in_seed_tmp = in_seed_tmp[:, :self.args.pre_frames, :] | |
else: | |
in_seed_tmp = last_sample[:, -self.args.pre_frames:, :] | |
cond_ = {'y':{}} | |
cond_['y']['audio'] = in_audio_tmp | |
cond_['y']['word'] = in_word_tmp | |
cond_['y']['id'] = in_id_tmp | |
cond_['y']['seed'] =in_seed_tmp | |
cond_['y']['mask'] = (torch.zeros([self.args.batch_size, 1, 1, self.args.pose_length]) < 1).cuda() | |
cond_['y']['style_feature'] = torch.zeros([bs, 512]).cuda() | |
shape_ = (bs, 1536, 1, 32) | |
sample = sample_fn( | |
self.model, | |
shape_, | |
clip_denoised=False, | |
model_kwargs=cond_, | |
skip_timesteps=0, | |
init_image=None, | |
progress=True, | |
dump_steps=None, | |
noise=None, | |
const_noise=False, | |
) | |
sample = sample.squeeze().permute(1,0).unsqueeze(0) | |
last_sample = sample.clone() | |
rec_latent_upper = sample[...,:512] | |
rec_latent_hands = sample[...,512:1024] | |
rec_latent_lower = sample[...,1024:1536] | |
if i == 0: | |
rec_all_upper.append(rec_latent_upper) | |
rec_all_hands.append(rec_latent_hands) | |
rec_all_lower.append(rec_latent_lower) | |
else: | |
rec_all_upper.append(rec_latent_upper[:, self.args.pre_frames:]) | |
rec_all_hands.append(rec_latent_hands[:, self.args.pre_frames:]) | |
rec_all_lower.append(rec_latent_lower[:, self.args.pre_frames:]) | |
rec_all_upper = torch.cat(rec_all_upper, dim=1) * self.vqvae_latent_scale | |
rec_all_hands = torch.cat(rec_all_hands, dim=1) * self.vqvae_latent_scale | |
rec_all_lower = torch.cat(rec_all_lower, dim=1) * self.vqvae_latent_scale | |
rec_upper = self.vq_model_upper.latent2origin(rec_all_upper)[0] | |
rec_hands = self.vq_model_hands.latent2origin(rec_all_hands)[0] | |
rec_lower = self.vq_model_lower.latent2origin(rec_all_lower)[0] | |
if self.use_trans: | |
rec_trans_v = rec_lower[...,-3:] | |
rec_trans_v = rec_trans_v * self.trans_std + self.trans_mean | |
rec_trans = torch.zeros_like(rec_trans_v) | |
rec_trans = torch.cumsum(rec_trans_v, dim=-2) | |
rec_trans[...,1]=rec_trans_v[...,1] | |
rec_lower = rec_lower[...,:-3] | |
if self.args.pose_norm: | |
rec_upper = rec_upper * self.std_upper + self.mean_upper | |
rec_hands = rec_hands * self.std_hands + self.mean_hands | |
rec_lower = rec_lower * self.std_lower + self.mean_lower | |
n = n - remain | |
tar_pose = tar_pose[:, :n, :] | |
tar_exps = tar_exps[:, :n, :] | |
tar_trans = tar_trans[:, :n, :] | |
tar_beta = tar_beta[:, :n, :] | |
rec_exps = tar_exps | |
#rec_pose_jaw = rec_face[:, :, :6] | |
rec_pose_legs = rec_lower[:, :, :54] | |
bs, n = rec_pose_legs.shape[0], rec_pose_legs.shape[1] | |
rec_pose_upper = rec_upper.reshape(bs, n, 13, 6) | |
rec_pose_upper = rc.rotation_6d_to_matrix(rec_pose_upper)# | |
rec_pose_upper = rc.matrix_to_axis_angle(rec_pose_upper).reshape(bs*n, 13*3) | |
rec_pose_upper_recover = self.inverse_selection_tensor(rec_pose_upper, self.joint_mask_upper, bs*n) | |
rec_pose_lower = rec_pose_legs.reshape(bs, n, 9, 6) | |
rec_pose_lower = rc.rotation_6d_to_matrix(rec_pose_lower) | |
rec_lower2global = rc.matrix_to_rotation_6d(rec_pose_lower.clone()).reshape(bs, n, 9*6) | |
rec_pose_lower = rc.matrix_to_axis_angle(rec_pose_lower).reshape(bs*n, 9*3) | |
rec_pose_lower_recover = self.inverse_selection_tensor(rec_pose_lower, self.joint_mask_lower, bs*n) | |
rec_pose_hands = rec_hands.reshape(bs, n, 30, 6) | |
rec_pose_hands = rc.rotation_6d_to_matrix(rec_pose_hands) | |
rec_pose_hands = rc.matrix_to_axis_angle(rec_pose_hands).reshape(bs*n, 30*3) | |
rec_pose_hands_recover = self.inverse_selection_tensor(rec_pose_hands, self.joint_mask_hands, bs*n) | |
rec_pose = rec_pose_upper_recover + rec_pose_lower_recover + rec_pose_hands_recover | |
rec_pose[:, 66:69] = tar_pose.reshape(bs*n, 55*3)[:, 66:69] | |
rec_pose = rc.axis_angle_to_matrix(rec_pose.reshape(bs*n, j, 3)) | |
rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, j*6) | |
tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(bs*n, j, 3)) | |
tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6) | |
return { | |
'rec_pose': rec_pose, | |
'rec_trans': rec_trans, | |
'tar_pose': tar_pose, | |
'tar_exps': tar_exps, | |
'tar_beta': tar_beta, | |
'tar_trans': tar_trans, | |
'rec_exps': rec_exps, | |
} | |
def train(self, epoch): | |
use_adv = bool(epoch>=self.args.no_adv_epoch) | |
self.model.train() | |
t_start = time.time() | |
self.tracker.reset() | |
for its, batch_data in enumerate(self.train_loader): | |
loaded_data = self._load_data(batch_data) | |
t_data = time.time() - t_start | |
self.opt.zero_grad() | |
g_loss_final = 0 | |
g_loss_final += self._g_training(loaded_data, use_adv, 'train', epoch) | |
g_loss_final.backward() | |
if self.args.grad_norm != 0: | |
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args.grad_norm) | |
self.opt.step() | |
mem_cost = torch.cuda.memory_cached() / 1E9 | |
lr_g = self.opt.param_groups[0]['lr'] | |
t_train = time.time() - t_start - t_data | |
t_start = time.time() | |
if its % self.args.log_period == 0: | |
self.train_recording(epoch, its, t_data, t_train, mem_cost, lr_g) | |
if self.args.debug: | |
if its == 1: break | |
self.opt_s.step(epoch) | |
def test(self, epoch): | |
results_save_path = self.checkpoint_path + f"/{epoch}/" | |
if os.path.exists(results_save_path): | |
return 0 | |
os.makedirs(results_save_path) | |
start_time = time.time() | |
total_length = 0 | |
test_seq_list = self.test_data.selected_file | |
align = 0 | |
latent_out = [] | |
latent_ori = [] | |
l2_all = 0 | |
lvel = 0 | |
self.model.eval() | |
self.smplx.eval() | |
self.eval_copy.eval() | |
with torch.no_grad(): | |
for its, batch_data in enumerate(self.test_loader): | |
loaded_data = self._load_data(batch_data) | |
net_out = self._g_test(loaded_data) | |
tar_pose = net_out['tar_pose'] | |
rec_pose = net_out['rec_pose'] | |
tar_exps = net_out['tar_exps'] | |
tar_beta = net_out['tar_beta'] | |
rec_trans = net_out['rec_trans'] | |
tar_trans = net_out['tar_trans'] | |
rec_exps = net_out['rec_exps'] | |
bs, n, j = tar_pose.shape[0], tar_pose.shape[1], self.joints | |
if (30/self.args.pose_fps) != 1: | |
assert 30%self.args.pose_fps == 0 | |
n *= int(30/self.args.pose_fps) | |
tar_pose = torch.nn.functional.interpolate(tar_pose.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1) | |
rec_pose = torch.nn.functional.interpolate(rec_pose.permute(0, 2, 1), scale_factor=30/self.args.pose_fps, mode='linear').permute(0,2,1) | |
rec_pose = rc.rotation_6d_to_matrix(rec_pose.reshape(bs*n, j, 6)) | |
rec_pose = rc.matrix_to_rotation_6d(rec_pose).reshape(bs, n, j*6) | |
tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs*n, j, 6)) | |
tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(bs, n, j*6) | |
remain = n%self.args.vae_test_len | |
latent_out.append(self.eval_copy.map2latent(rec_pose[:, :n-remain]).reshape(-1, self.args.vae_length).detach().cpu().numpy()) # bs * n/8 * 240 | |
latent_ori.append(self.eval_copy.map2latent(tar_pose[:, :n-remain]).reshape(-1, self.args.vae_length).detach().cpu().numpy()) | |
rec_pose = rc.rotation_6d_to_matrix(rec_pose.reshape(bs*n, j, 6)) | |
rec_pose = rc.matrix_to_axis_angle(rec_pose).reshape(bs*n, j*3) | |
tar_pose = rc.rotation_6d_to_matrix(tar_pose.reshape(bs*n, j, 6)) | |
tar_pose = rc.matrix_to_axis_angle(tar_pose).reshape(bs*n, j*3) | |
vertices_rec = self.smplx( | |
betas=tar_beta.reshape(bs*n, 300), | |
transl=rec_trans.reshape(bs*n, 3)-rec_trans.reshape(bs*n, 3), | |
expression=tar_exps.reshape(bs*n, 100)-tar_exps.reshape(bs*n, 100), | |
jaw_pose=rec_pose[:, 66:69], | |
global_orient=rec_pose[:,:3], | |
body_pose=rec_pose[:,3:21*3+3], | |
left_hand_pose=rec_pose[:,25*3:40*3], | |
right_hand_pose=rec_pose[:,40*3:55*3], | |
return_joints=True, | |
leye_pose=rec_pose[:, 69:72], | |
reye_pose=rec_pose[:, 72:75], | |
) | |
vertices_rec_face = self.smplx( | |
betas=tar_beta.reshape(bs*n, 300), | |
transl=rec_trans.reshape(bs*n, 3)-rec_trans.reshape(bs*n, 3), | |
expression=rec_exps.reshape(bs*n, 100), | |
jaw_pose=rec_pose[:, 66:69], | |
global_orient=rec_pose[:,:3]-rec_pose[:,:3], | |
body_pose=rec_pose[:,3:21*3+3]-rec_pose[:,3:21*3+3], | |
left_hand_pose=rec_pose[:,25*3:40*3]-rec_pose[:,25*3:40*3], | |
right_hand_pose=rec_pose[:,40*3:55*3]-rec_pose[:,40*3:55*3], | |
return_verts=True, | |
return_joints=True, | |
leye_pose=rec_pose[:, 69:72]-rec_pose[:, 69:72], | |
reye_pose=rec_pose[:, 72:75]-rec_pose[:, 72:75], | |
) | |
vertices_tar_face = self.smplx( | |
betas=tar_beta.reshape(bs*n, 300), | |
transl=tar_trans.reshape(bs*n, 3)-tar_trans.reshape(bs*n, 3), | |
expression=tar_exps.reshape(bs*n, 100), | |
jaw_pose=tar_pose[:, 66:69], | |
global_orient=tar_pose[:,:3]-tar_pose[:,:3], | |
body_pose=tar_pose[:,3:21*3+3]-tar_pose[:,3:21*3+3], | |
left_hand_pose=tar_pose[:,25*3:40*3]-tar_pose[:,25*3:40*3], | |
right_hand_pose=tar_pose[:,40*3:55*3]-tar_pose[:,40*3:55*3], | |
return_verts=True, | |
return_joints=True, | |
leye_pose=tar_pose[:, 69:72]-tar_pose[:, 69:72], | |
reye_pose=tar_pose[:, 72:75]-tar_pose[:, 72:75], | |
) | |
joints_rec = vertices_rec["joints"].detach().cpu().numpy().reshape(1, n, 127*3)[0, :n, :55*3] | |
# joints_tar = vertices_tar["joints"].detach().cpu().numpy().reshape(1, n, 127*3)[0, :n, :55*3] | |
facial_rec = vertices_rec_face['vertices'].reshape(1, n, -1)[0, :n] | |
facial_tar = vertices_tar_face['vertices'].reshape(1, n, -1)[0, :n] | |
face_vel_loss = self.vel_loss(facial_rec[1:, :] - facial_tar[:-1, :], facial_tar[1:, :] - facial_tar[:-1, :]) | |
l2 = self.reclatent_loss(facial_rec, facial_tar) | |
l2_all += l2.item() * n | |
lvel += face_vel_loss.item() * n | |
_ = self.l1_calculator.run(joints_rec) | |
if self.alignmenter is not None: | |
in_audio_eval, sr = librosa.load(self.args.data_path+"wave16k/"+test_seq_list.iloc[its]['id']+".wav") | |
in_audio_eval = librosa.resample(in_audio_eval, orig_sr=sr, target_sr=self.args.audio_sr) | |
a_offset = int(self.align_mask * (self.args.audio_sr / self.args.pose_fps)) | |
onset_bt = self.alignmenter.load_audio(in_audio_eval[:int(self.args.audio_sr / self.args.pose_fps*n)], a_offset, len(in_audio_eval)-a_offset, True) | |
beat_vel = self.alignmenter.load_pose(joints_rec, self.align_mask, n-self.align_mask, 30, True) | |
align += (self.alignmenter.calculate_align(onset_bt, beat_vel, 30) * (n-2*self.align_mask)) | |
tar_pose_np = tar_pose.detach().cpu().numpy() | |
rec_pose_np = rec_pose.detach().cpu().numpy() | |
rec_trans_np = rec_trans.detach().cpu().numpy().reshape(bs*n, 3) | |
rec_exp_np = rec_exps.detach().cpu().numpy().reshape(bs*n, 100) | |
tar_exp_np = tar_exps.detach().cpu().numpy().reshape(bs*n, 100) | |
tar_trans_np = tar_trans.detach().cpu().numpy().reshape(bs*n, 3) | |
gt_npz = np.load(self.args.data_path+self.args.pose_rep +"/"+test_seq_list.iloc[its]['id']+".npz", allow_pickle=True) | |
np.savez(results_save_path+"gt_"+test_seq_list.iloc[its]['id']+'.npz', | |
betas=gt_npz["betas"], | |
poses=tar_pose_np, | |
expressions=tar_exp_np, | |
trans=tar_trans_np, | |
model='smplx2020', | |
gender='neutral', | |
mocap_frame_rate = 30 , | |
) | |
np.savez(results_save_path+"res_"+test_seq_list.iloc[its]['id']+'.npz', | |
betas=gt_npz["betas"], | |
poses=rec_pose_np, | |
expressions=rec_exp_np, | |
trans=rec_trans_np, | |
model='smplx2020', | |
gender='neutral', | |
mocap_frame_rate = 30, | |
) | |
total_length += n | |
logger.info(f"l2 loss: {l2_all/total_length}") | |
logger.info(f"lvel loss: {lvel/total_length}") | |
latent_out_all = np.concatenate(latent_out, axis=0) | |
latent_ori_all = np.concatenate(latent_ori, axis=0) | |
fid = data_tools.FIDCalculator.frechet_distance(latent_out_all, latent_ori_all) | |
logger.info(f"fid score: {fid}") | |
self.test_recording("fid", fid, epoch) | |
align_avg = align/(total_length-2*len(self.test_loader)*self.align_mask) | |
logger.info(f"align score: {align_avg}") | |
self.test_recording("bc", align_avg, epoch) | |
l1div = self.l1_calculator.avg() | |
logger.info(f"l1div score: {l1div}") | |
self.test_recording("l1div", l1div, epoch) | |
#data_tools.result2target_vis(self.args.pose_version, results_save_path, results_save_path, self.test_demo, False) | |
end_time = time.time() - start_time | |
logger.info(f"total inference time: {int(end_time)} s for {int(total_length/self.args.pose_fps)} s motion") | |