File size: 30,359 Bytes
1da48bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
import os
import pickle
import math
import shutil
import numpy as np
import lmdb as lmdb
import textgrid as tg
import pandas as pd
import torch
import glob
import json
from termcolor import colored
from loguru import logger
from collections import defaultdict
from torch.utils.data import Dataset
import torch.distributed as dist
#import pyarrow
import pickle
import librosa
import smplx
import glob

from .build_vocab import Vocab
from .utils.audio_features import Wav2Vec2Model
from .data_tools import joints_list
from .utils import rotation_conversions as rc
from .utils import other_tools

# ACCAD 120
# BioMotionLab_NTroje 120
# CMU 很复杂
# EKUT 100
# Eyes_Japan_Dataset 很复杂
# HumanEva 很复杂
# KIT 100
# MPI_HDM05 120
# MPI_Limits 120
# MPI_mosh 很复杂
# SFU 120
# SSM_synced 很复杂
# TCD_handMocap 很复杂
# TotalCapture 60
# Transitions_mocap 120

all_sequences = [
    'ACCAD',
    'BioMotionLab_NTroje',
    'CMU',
    'EKUT',
    'Eyes_Japan_Dataset',
    'HumanEva',
    'KIT',
    'MPI_HDM05',
    'MPI_Limits',
    'MPI_mosh',
    'SFU',
    'SSM_synced',
    'TCD_handMocap',
    'TotalCapture',
    'Transitions_mocap',
]
amass_test_split = ['Transitions_mocap', 'SSM_synced']
amass_vald_split = ['HumanEva', 'MPI_HDM05', 'SFU', 'MPI_mosh']
amass_train_split = ['BioMotionLab_NTroje', 'Eyes_Japan_Dataset', 'TotalCapture', 'KIT', 'ACCAD', 'CMU', 'MPI_Limits',
                     'TCD_handMocap', 'EKUT']

# 上面这些spilt方式是MOTION CLIP的,但是由于motionx中的framerate处理有问题,我先暂且只挑部分数据集进行训练
# 这些都是120fps的
# amass_test_split = ['SFU']
# amass_vald_split = ['MPI_Limits']
# amass_train_split = ['BioMotionLab_NTroje', 'MPI_HDM05', 'ACCAD','Transitions_mocap']


amass_splits = {
    'test': amass_test_split,
    'val': amass_vald_split,
    'train': amass_train_split
}
# assert len(amass_splits['train'] + amass_splits['test'] + amass_splits['vald']) == len(all_sequences) == 15

class CustomDataset(Dataset):
    def __init__(self, args, loader_type, augmentation=None, kwargs=None, build_cache=True):
        self.args = args
        self.loader_type = loader_type

        self.rank = 0
        self.ori_stride = self.args.stride
        self.ori_length = self.args.pose_length
        self.alignment = [0,0] # for trinity
        
        self.ori_joint_list = joints_list[self.args.ori_joints]
        self.tar_joint_list = joints_list[self.args.tar_joints]
        if 'smplx' in self.args.pose_rep:
            self.joint_mask = np.zeros(len(list(self.ori_joint_list.keys()))*3)
            self.joints = len(list(self.tar_joint_list.keys()))  
            for joint_name in self.tar_joint_list:
                self.joint_mask[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
        else:
            self.joints = len(list(self.ori_joint_list.keys()))+1
            self.joint_mask = np.zeros(self.joints*3)
            for joint_name in self.tar_joint_list:
                if joint_name == "Hips":
                    self.joint_mask[3:6] = 1
                else:
                    self.joint_mask[self.ori_joint_list[joint_name][1] - self.ori_joint_list[joint_name][0]:self.ori_joint_list[joint_name][1]] = 1
        # select trainable joints
        
        split_rule = pd.read_csv(args.data_path+"train_test_split.csv")
        self.selected_file = split_rule.loc[(split_rule['type'] == loader_type) & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
        if args.additional_data and loader_type == 'train':
            split_b = split_rule.loc[(split_rule['type'] == 'additional') & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
            #self.selected_file = split_rule.loc[(split_rule['type'] == 'additional') & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
            self.selected_file = pd.concat([self.selected_file, split_b])
        if self.selected_file.empty:
            logger.warning(f"{loader_type} is empty for speaker {self.args.training_speakers}, use train set 0-8 instead")
            self.selected_file = split_rule.loc[(split_rule['type'] == 'train') & (split_rule['id'].str.split("_").str[0].astype(int).isin(self.args.training_speakers))]
            self.selected_file = self.selected_file.iloc[0:8]
        self.data_dir = args.data_path
        self.use_amass = args.use_amass
        self.beatx_during_time = 0
        self.amass_during_time = 0
        
        if loader_type == "test": 
            self.args.multi_length_training = [1.0]
        self.max_length = int(args.pose_length * self.args.multi_length_training[-1])
        self.max_audio_pre_len = math.floor(args.pose_length / args.pose_fps * self.args.audio_sr)
        if self.max_audio_pre_len > self.args.test_length*self.args.audio_sr: 
            self.max_audio_pre_len = self.args.test_length*self.args.audio_sr
        preloaded_dir = self.args.root_path + self.args.cache_path + loader_type + f"/{args.pose_rep}_cache"      

        if self.args.beat_align:
            if not os.path.exists(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy"):
                self.calculate_mean_velocity(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy")
            self.avg_vel = np.load(args.data_path+f"weights/mean_vel_{args.pose_rep}.npy")
            
        if build_cache and self.rank == 0:
            self.build_cache(preloaded_dir)
        self.lmdb_env = lmdb.open(preloaded_dir, readonly=True, lock=False)
        with self.lmdb_env.begin() as txn:
            self.n_samples = txn.stat()["entries"] 
            
        self.norm = True
        self.mean = np.load('./mean_std/beatx_2_330_mean.npy')
        self.std = np.load('./mean_std/beatx_2_330_std.npy')
        
        self.trans_mean = np.load('./mean_std/beatx_2_trans_mean.npy')
        self.trans_std = np.load('./mean_std/beatx_2_trans_std.npy')

    def load_amass(self,data):
        ## 这个是用来
        # 修改amass数据里面的朝向,原本在blender里面是Z轴向上,目标是Y轴向上,当时面向目前没改
        
        data_dict = {key: data[key] for key in data}
        frames = data_dict['poses'].shape[0]
        b = data_dict['poses'][...,:3]
        b = rc.axis_angle_to_matrix(torch.from_numpy(b))
        rot_matrix = np.array([[1.0, 0.0, 0.0], [0.0 , 0.0, 1.0], [0.0, -1.0, 0.0]])
        c = np.einsum('ij,kjl->kil',rot_matrix,b)
        c = rc.matrix_to_axis_angle(torch.from_numpy(c))
        data_dict['poses'][...,:3] = c
        
        trans_matrix1 = np.array([[1.0, 0.0, 0.0], [0.0 , 0.0, -1.0], [0.0, 1.0, 0.0]])
        data_dict['trans'] = np.einsum("bi,ij->bj",data_dict['trans'],trans_matrix1)
        
        betas300 = np.zeros(300)
        betas300[:16] = data_dict['betas']
        data_dict['betas'] = betas300
        data_dict["expressions"] = np.zeros((frames,100))
        
        return data_dict


    def calculate_mean_velocity(self, save_path):
        self.smplx = smplx.create(
            self.args.data_path_1+"smplx_models/", 
            model_type='smplx',
            gender='NEUTRAL_2020', 
            use_face_contour=False,
            num_betas=300,
            num_expression_coeffs=100, 
            ext='npz',
            use_pca=False,
        ).cuda().eval()
        dir_p = self.data_dir + self.args.pose_rep + "/"
        all_list = []
        from tqdm import tqdm
        for tar in tqdm(os.listdir(dir_p)):
            if tar.endswith(".npz"):
                m_data = np.load(dir_p+tar, allow_pickle=True)
                betas, poses, trans, exps = m_data["betas"], m_data["poses"], m_data["trans"], m_data["expressions"]
                n, c = poses.shape[0], poses.shape[1]
                betas = betas.reshape(1, 300)
                betas = np.tile(betas, (n, 1))
                betas = torch.from_numpy(betas).cuda().float()
                poses = torch.from_numpy(poses.reshape(n, c)).cuda().float()
                exps = torch.from_numpy(exps.reshape(n, 100)).cuda().float()
                trans = torch.from_numpy(trans.reshape(n, 3)).cuda().float()
                max_length = 128
                s, r = n//max_length, n%max_length
                #print(n, s, r)
                all_tensor = []
                for i in range(s):
                    with torch.no_grad():
                        joints = self.smplx(
                            betas=betas[i*max_length:(i+1)*max_length], 
                            transl=trans[i*max_length:(i+1)*max_length], 
                            expression=exps[i*max_length:(i+1)*max_length], 
                            jaw_pose=poses[i*max_length:(i+1)*max_length, 66:69], 
                            global_orient=poses[i*max_length:(i+1)*max_length,:3], 
                            body_pose=poses[i*max_length:(i+1)*max_length,3:21*3+3], 
                            left_hand_pose=poses[i*max_length:(i+1)*max_length,25*3:40*3], 
                            right_hand_pose=poses[i*max_length:(i+1)*max_length,40*3:55*3], 
                            return_verts=True,
                            return_joints=True,
                            leye_pose=poses[i*max_length:(i+1)*max_length, 69:72], 
                            reye_pose=poses[i*max_length:(i+1)*max_length, 72:75],
                        )['joints'][:, :55, :].reshape(max_length, 55*3)
                    all_tensor.append(joints)
                if r != 0:
                    with torch.no_grad():
                        joints = self.smplx(
                            betas=betas[s*max_length:s*max_length+r], 
                            transl=trans[s*max_length:s*max_length+r], 
                            expression=exps[s*max_length:s*max_length+r], 
                            jaw_pose=poses[s*max_length:s*max_length+r, 66:69], 
                            global_orient=poses[s*max_length:s*max_length+r,:3], 
                            body_pose=poses[s*max_length:s*max_length+r,3:21*3+3], 
                            left_hand_pose=poses[s*max_length:s*max_length+r,25*3:40*3], 
                            right_hand_pose=poses[s*max_length:s*max_length+r,40*3:55*3], 
                            return_verts=True,
                            return_joints=True,
                            leye_pose=poses[s*max_length:s*max_length+r, 69:72], 
                            reye_pose=poses[s*max_length:s*max_length+r, 72:75],
                        )['joints'][:, :55, :].reshape(r, 55*3)
                    all_tensor.append(joints)
                joints = torch.cat(all_tensor, axis=0)
                joints = joints.permute(1, 0)
                dt = 1/30
            # first steps is forward diff (t+1 - t) / dt
                init_vel = (joints[:, 1:2] - joints[:, :1]) / dt
                # middle steps are second order (t+1 - t-1) / 2dt
                middle_vel = (joints[:, 2:] - joints[:, 0:-2]) / (2 * dt)
                # last step is backward diff (t - t-1) / dt
                final_vel = (joints[:, -1:] - joints[:, -2:-1]) / dt
                #print(joints.shape, init_vel.shape, middle_vel.shape, final_vel.shape)
                vel_seq = torch.cat([init_vel, middle_vel, final_vel], dim=1).permute(1, 0).reshape(n, 55, 3)
                #print(vel_seq.shape)
                #.permute(1, 0).reshape(n, 55, 3)
                vel_seq_np = vel_seq.cpu().numpy()
                vel_joints_np = np.linalg.norm(vel_seq_np, axis=2) # n * 55
                all_list.append(vel_joints_np)
        avg_vel = np.mean(np.concatenate(all_list, axis=0),axis=0) # 55
        np.save(save_path, avg_vel)
        
    
    def build_cache(self, preloaded_dir):
        logger.info(f"Audio bit rate: {self.args.audio_fps}")
        logger.info("Reading data '{}'...".format(self.data_dir))
        logger.info("Creating the dataset cache...")
        if self.args.new_cache:
            if os.path.exists(preloaded_dir):
                shutil.rmtree(preloaded_dir)
        if os.path.exists(preloaded_dir):
            logger.info("Found the cache {}".format(preloaded_dir))
        elif self.loader_type == "test":
            self.cache_generation(
                preloaded_dir, True, 
                0, 0,
                is_test=True)
        else:
            self.cache_generation(
                preloaded_dir, self.args.disable_filtering, 
                self.args.clean_first_seconds, self.args.clean_final_seconds,
                is_test=False)
        logger.info(f"BEATX during time is {self.beatx_during_time}s !")
        logger.info(f"AMASS during time is {self.amass_during_time}s !")
        
        ## 对于BEATX train ,val ,test: 69800s ,7695s, 18672s ,总计 26.7h
        ##
        
    def __len__(self):
        return self.n_samples
    

    def cache_generation(self, out_lmdb_dir, disable_filtering, clean_first_seconds,  clean_final_seconds, is_test=False):
        # if "wav2vec2" in self.args.audio_rep:
        #     self.wav2vec_model = Wav2Vec2Model.from_pretrained(f"{self.args.data_path_1}/hub/transformer/wav2vec2-base-960h")
        #     self.wav2vec_model.feature_extractor._freeze_parameters()
        #     self.wav2vec_model = self.wav2vec_model.cuda()
        #     self.wav2vec_model.eval()
        
        self.n_out_samples = 0
        # create db for samples
        if not os.path.exists(out_lmdb_dir): os.makedirs(out_lmdb_dir)
        dst_lmdb_env = lmdb.open(out_lmdb_dir, map_size= int(1024 ** 3 * 50))# 50G
        n_filtered_out = defaultdict(int)
    
        for index, file_name in self.selected_file.iterrows():
            f_name = file_name["id"]
            ext = ".npz" if "smplx" in self.args.pose_rep else ".bvh"
            pose_file = self.data_dir + self.args.pose_rep + "/" + f_name + ext
            pose_each_file = []
            trans_each_file = []
            trans_v_each_file = []
            shape_each_file = []
            audio_each_file = []
            facial_each_file = []
            word_each_file = []
            emo_each_file = []
            sem_each_file = []
            vid_each_file = []
            id_pose = f_name #1_wayne_0_1_1
            
            logger.info(colored(f"# ---- Building cache for Pose   {id_pose} ---- #", "blue"))
            if "smplx" in self.args.pose_rep:
                pose_data = np.load(pose_file, allow_pickle=True)
                assert 30%self.args.pose_fps == 0, 'pose_fps should be an aliquot part of 30'
                stride = int(30/self.args.pose_fps)
                pose_each_file = pose_data["poses"][::stride] * self.joint_mask
                pose_each_file = pose_each_file[:, self.joint_mask.astype(bool)]
                # print(pose_each_file.shape)
                self.beatx_during_time += pose_each_file.shape[0]/30
                trans_each_file = pose_data["trans"][::stride]
                trans_each_file[:,0] = trans_each_file[:,0] - trans_each_file[0,0]
                trans_each_file[:,2] = trans_each_file[:,2] - trans_each_file[0,2]
                trans_v_each_file = np.zeros_like(trans_each_file)
                trans_v_each_file[1:,0] = trans_each_file[1:,0] - trans_each_file[:-1,0]
                trans_v_each_file[0,0] = trans_v_each_file[1,0]
                trans_v_each_file[1:,2] = trans_each_file[1:,2] - trans_each_file[:-1,2]
                trans_v_each_file[0,2] = trans_v_each_file[1,2]
                trans_v_each_file[:,1] = trans_each_file[:,1]
                
                
                shape_each_file = np.repeat(pose_data["betas"].reshape(1, 300), pose_each_file.shape[0], axis=0)
                if self.args.facial_rep is not None:
                    logger.info(f"# ---- Building cache for Facial {id_pose} and Pose {id_pose} ---- #")
                    facial_each_file = pose_data["expressions"][::stride]
                    if self.args.facial_norm: 
                        facial_each_file = (facial_each_file - self.mean_facial) / self.std_facial
                    
            if self.args.id_rep is not None:
                vid_each_file = np.repeat(np.array(int(f_name.split("_")[0])-1).reshape(1, 1), pose_each_file.shape[0], axis=0)
      
            filtered_result = self._sample_from_clip(
                dst_lmdb_env,
                pose_each_file, trans_each_file,trans_v_each_file, shape_each_file,
                vid_each_file,
                disable_filtering, clean_first_seconds, clean_final_seconds, is_test,
                ) 
            for type in filtered_result.keys():
                n_filtered_out[type] += filtered_result[type]
                    
        if self.args.use_amass:
            amass_dir = '/mnt/fu09a/chenbohong/PantoMatrix/scripts/EMAGE_2024/datasets/AMASS_SMPLX'
            for dataset in amass_splits[self.loader_type]:
                search_path = os.path.join(amass_dir,dataset, '**', '*.npz')
                npz_files = glob.glob(search_path, recursive=True)     
                for index, file_name in enumerate(npz_files):
                    f_name = file_name.split('/')[-1]
                    ext = ".npz" if "smplx" in self.args.pose_rep else ".bvh"
                    pose_file = file_name
                    pose_each_file = []
                    trans_each_file = []
                    trans_v_each_file = []
                    shape_each_file = []
                    audio_each_file = []
                    facial_each_file = []
                    word_each_file = []
                    emo_each_file = []
                    sem_each_file = []
                    vid_each_file = []
                    id_pose = f_name #1_wayne_0_1_1
                    
                    logger.info(colored(f"# ---- Building cache for Pose   {id_pose} ---- #", "blue"))
                    if "smplx" in self.args.pose_rep:
                        pose_data = np.load(pose_file, allow_pickle=True)
                        if len(pose_data.files)==6:
                            logger.info(colored(f"# ---- state file ---- #", "red"))
                            continue
                        assert 30%self.args.pose_fps == 0, 'pose_fps should be an aliquot part of 30'
                        pose_each_file = self.load_amass(pose_data)
                        fps = pose_data['mocap_frame_rate']
                        stride =round(fps/30)
                        pose_each_file = pose_data["poses"][::stride] * self.joint_mask
                        pose_each_file = pose_each_file[:, self.joint_mask.astype(bool)]
                        trans_each_file = pose_data["trans"][::stride]
                        

                        trans_each_file[:,0] = trans_each_file[:,0] - trans_each_file[0,0]
                        trans_each_file[:,2] = trans_each_file[:,2] - trans_each_file[0,2]
                        trans_v_each_file = np.zeros_like(trans_each_file)
                        trans_v_each_file[1:,0] = trans_each_file[1:,0] - trans_each_file[:-1,0]
                        trans_v_each_file[0,0] = trans_v_each_file[1,0]
                        trans_v_each_file[1:,2] = trans_each_file[1:,2] - trans_each_file[:-1,2]
                        trans_v_each_file[0,2] = trans_v_each_file[1,2]
                        trans_v_each_file[:,1] = trans_each_file[:,1]
                        
                        
                        
                        shape_each_file = np.repeat(pose_data["betas"].reshape(1, -1), pose_each_file.shape[0], axis=0)
                                
                    if self.args.id_rep is not None:
                        vid_each_file = np.repeat(np.array(int(100)-1).reshape(1, 1), pose_each_file.shape[0], axis=0)
            
                    filtered_result = self._sample_from_clip(
                        dst_lmdb_env,
                        pose_each_file, trans_each_file,trans_v_each_file, shape_each_file,
                        vid_each_file,
                        disable_filtering, clean_first_seconds, clean_final_seconds, is_test,
                        ) 
                    for type in filtered_result.keys():
                        n_filtered_out[type] += filtered_result[type]
                    
                    
        with dst_lmdb_env.begin() as txn:
            logger.info(colored(f"no. of samples: {txn.stat()['entries']}", "cyan"))
            n_total_filtered = 0
            for type, n_filtered in n_filtered_out.items():
                logger.info("{}: {}".format(type, n_filtered))
                n_total_filtered += n_filtered
            logger.info(colored("no. of excluded samples: {} ({:.1f}%)".format(
                n_total_filtered, 100 * n_total_filtered / (txn.stat()["entries"] + n_total_filtered)), "cyan"))
        dst_lmdb_env.sync()
        dst_lmdb_env.close()
    
    def _sample_from_clip(
        self, dst_lmdb_env, pose_each_file, trans_each_file, trans_v_each_file,shape_each_file,
        vid_each_file,
        disable_filtering, clean_first_seconds, clean_final_seconds, is_test,
        ):
        """
        for data cleaning, we ignore the data for first and final n s
        for test, we return all data 
        """
        # audio_start = int(self.alignment[0] * self.args.audio_fps)
        # pose_start = int(self.alignment[1] * self.args.pose_fps)
        #logger.info(f"before: {audio_each_file.shape} {pose_each_file.shape}")
        # audio_each_file = audio_each_file[audio_start:]
        # pose_each_file = pose_each_file[pose_start:]
        # trans_each_file = 
        #logger.info(f"after alignment: {audio_each_file.shape} {pose_each_file.shape}")
        #print(pose_each_file.shape)
        round_seconds_skeleton = pose_each_file.shape[0] // self.args.pose_fps  # assume 1500 frames / 15 fps = 100 s
        #print(round_seconds_skeleton)
 
        clip_s_t, clip_e_t = clean_first_seconds, round_seconds_skeleton - clean_final_seconds # assume [10, 90]s
        clip_s_f_audio, clip_e_f_audio = self.args.audio_fps * clip_s_t, clip_e_t * self.args.audio_fps # [160,000,90*160,000]
        clip_s_f_pose, clip_e_f_pose = clip_s_t * self.args.pose_fps, clip_e_t * self.args.pose_fps # [150,90*15]
        
        
        for ratio in self.args.multi_length_training:
            if is_test:# stride = length for test
                cut_length = clip_e_f_pose - clip_s_f_pose
                self.args.stride = cut_length
                self.max_length = cut_length
            else:
                self.args.stride = int(ratio*self.ori_stride)
                cut_length = int(self.ori_length*ratio)
                
            num_subdivision = math.floor((clip_e_f_pose - clip_s_f_pose - cut_length) / self.args.stride) + 1
            logger.info(f"pose from frame {clip_s_f_pose} to {clip_e_f_pose}, length {cut_length}")
            logger.info(f"{num_subdivision} clips is expected with stride {self.args.stride}")
            

            n_filtered_out = defaultdict(int)
            sample_pose_list = []
            sample_audio_list = []
            sample_shape_list = []
            sample_vid_list = []
            sample_trans_list = []
            sample_trans_v_list = []
           
            for i in range(num_subdivision): # cut into around 2s chip, (self npose)
                start_idx = clip_s_f_pose + i * self.args.stride
                fin_idx = start_idx + cut_length 
                sample_pose = pose_each_file[start_idx:fin_idx]
                sample_trans = trans_each_file[start_idx:fin_idx]
                sample_trans_v = trans_v_each_file[start_idx:fin_idx]
                sample_shape = shape_each_file[start_idx:fin_idx]
                # print(sample_pose.shape)


                sample_vid = vid_each_file[start_idx:fin_idx] if self.args.id_rep is not None else np.array([-1])
                
                if sample_pose.any() != None:
                    # filtering motion skeleton data
                    sample_pose, filtering_message = MotionPreprocessor(sample_pose).get()
                    is_correct_motion = (sample_pose is not None)
                    if is_correct_motion or disable_filtering:
                        sample_pose_list.append(sample_pose)

                        sample_shape_list.append(sample_shape)

                        sample_vid_list.append(sample_vid)


                        sample_trans_list.append(sample_trans)
                        sample_trans_v_list.append(sample_trans_v)
                    else:
                        n_filtered_out[filtering_message] += 1

            if len(sample_pose_list) > 0:
                with dst_lmdb_env.begin(write=True) as txn:
                    for pose, shape,  vid, trans,trans_v in zip(
                        sample_pose_list,
                        sample_shape_list,
                        sample_vid_list,
                        sample_trans_list,
                        sample_trans_v_list,
                        ):
                        k = "{:005}".format(self.n_out_samples).encode("ascii")
                        v = [pose , shape, vid, trans,trans_v]
                        v = pickle.dumps(v,5)
                        txn.put(k, v)
                        self.n_out_samples += 1
        return n_filtered_out

    def __getitem__(self, idx):
        with self.lmdb_env.begin(write=False) as txn:
            key = "{:005}".format(idx).encode("ascii")
            sample = txn.get(key)
            sample = pickle.loads(sample)
            tar_pose,  in_shape, vid, trans,trans_v = sample
            tar_pose = torch.from_numpy(tar_pose).float()
            tar_pose = rc.axis_angle_to_matrix(tar_pose.reshape(-1, 55, 3))
            tar_pose = rc.matrix_to_rotation_6d(tar_pose).reshape(-1, 55*6)
            
            if self.norm:
                tar_pose = (tar_pose - self.mean) / self.std
                trans_v = (trans_v-self.trans_mean)/self.trans_std
            
            if self.loader_type == "test":
                tar_pose = tar_pose.float()
                trans = torch.from_numpy(trans).float()
                trans_v = torch.from_numpy(trans_v).float()
                vid = torch.from_numpy(vid).float()
                in_shape = torch.from_numpy(in_shape).float()
            else:
                in_shape = torch.from_numpy(in_shape).reshape((in_shape.shape[0], -1)).float()
                trans = torch.from_numpy(trans).reshape((trans.shape[0], -1)).float()
                trans_v = torch.from_numpy(trans_v).reshape((trans_v.shape[0], -1)).float()
                vid = torch.from_numpy(vid).reshape((vid.shape[0], -1)).float()
                tar_pose = tar_pose.reshape((tar_pose.shape[0], -1)).float()
                tar_pose = torch.cat([tar_pose, trans_v], dim=1)
            return tar_pose
         
class MotionPreprocessor:
    def __init__(self, skeletons):
        self.skeletons = skeletons
        #self.mean_pose = mean_pose
        self.filtering_message = "PASS"

    def get(self):
        assert (self.skeletons is not None)

        # filtering
        if self.skeletons is not None:
            if self.check_pose_diff():
                self.skeletons = []
                self.filtering_message = "pose"
            # elif self.check_spine_angle():
            #     self.skeletons = []
            #     self.filtering_message = "spine angle"
            # elif self.check_static_motion():
            #     self.skeletons = []
            #     self.filtering_message = "motion"

        # if self.skeletons != []:
        #     self.skeletons = self.skeletons.tolist()
        #     for i, frame in enumerate(self.skeletons):
        #         assert not np.isnan(self.skeletons[i]).any()  # missing joints

        return self.skeletons, self.filtering_message

    def check_static_motion(self, verbose=True):
        def get_variance(skeleton, joint_idx):
            wrist_pos = skeleton[:, joint_idx]
            variance = np.sum(np.var(wrist_pos, axis=0))
            return variance

        left_arm_var = get_variance(self.skeletons, 6)
        right_arm_var = get_variance(self.skeletons, 9)

        th = 0.0014  # exclude 13110
        # th = 0.002  # exclude 16905
        if left_arm_var < th and right_arm_var < th:
            if verbose:
                print("skip - check_static_motion left var {}, right var {}".format(left_arm_var, right_arm_var))
            return True
        else:
            if verbose:
                print("pass - check_static_motion left var {}, right var {}".format(left_arm_var, right_arm_var))
            return False


    def check_pose_diff(self, verbose=False):
#         diff = np.abs(self.skeletons - self.mean_pose) # 186*1
#         diff = np.mean(diff)

#         # th = 0.017
#         th = 0.02 #0.02  # exclude 3594
#         if diff < th:
#             if verbose:
#                 print("skip - check_pose_diff {:.5f}".format(diff))
#             return True
# #         th = 3.5 #0.02  # exclude 3594
# #         if 3.5 < diff < 5:
# #             if verbose:
# #                 print("skip - check_pose_diff {:.5f}".format(diff))
# #             return True
#         else:
#             if verbose:
#                 print("pass - check_pose_diff {:.5f}".format(diff))
        return False


    def check_spine_angle(self, verbose=True):
        def angle_between(v1, v2):
            v1_u = v1 / np.linalg.norm(v1)
            v2_u = v2 / np.linalg.norm(v2)
            return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0))

        angles = []
        for i in range(self.skeletons.shape[0]):
            spine_vec = self.skeletons[i, 1] - self.skeletons[i, 0]
            angle = angle_between(spine_vec, [0, -1, 0])
            angles.append(angle)

        if np.rad2deg(max(angles)) > 30 or np.rad2deg(np.mean(angles)) > 20:  # exclude 4495
        # if np.rad2deg(max(angles)) > 20:  # exclude 8270
            if verbose:
                print("skip - check_spine_angle {:.5f}, {:.5f}".format(max(angles), np.mean(angles)))
            return True
        else:
            if verbose:
                print("pass - check_spine_angle {:.5f}".format(max(angles)))
            return False