File size: 13,611 Bytes
d166583 f199c3e d166583 72d6ba3 d166583 72d6ba3 d166583 72d6ba3 d166583 f199c3e 14987d0 f199c3e d166583 14987d0 72d6ba3 d166583 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
"""
inference steps - to be run whenever a new image is uploaded
input: image and textual prompt
steps:
1. generate an image (or more than one) with stable diffusion
2. GPT-4o - detect main pieces of furniture
3. perform object detection on the image looking for the main pieces of furniture
4. generate embeddings for the image and the subimages
5. perform a similarity search on the index of ikea products
6. return the results: generated image, main pieces of furniture, similar ikea products
"""
import logging
from datetime import datetime
# Set up logging to both file and console
log_filename = f"inference_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log"
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler(log_filename),
logging.StreamHandler()
]
)
import replicate
from pydantic import BaseModel, Field
from openai import OpenAI
import base64
import numpy as np
import os
import requests
from PIL import Image
from io import BytesIO
import sys
import dotenv
import pandas as pd
import faiss
logging.info("Loading environment variables...")
dotenv.load_dotenv()
client = OpenAI()
# step 1
class Prompt(BaseModel):
prompt: str = Field(description="A detailed prompt for a diffusion model")
def generate_prompt_for_flux(user_prompt):
completion = client.beta.chat.completions.parse(
model="gpt-4o-mini",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": f"Generate a prompt for a diffusion model that is a more detailed version of the following prompt: {user_prompt}. Keep it succinct but more descriptive than the original. Just return a few words, listing possible relevant furniture elements and objects that will be present in the image. "},
],
}
],
response_format=Prompt,
)
analysis = completion.choices[0].message.parsed
return analysis.prompt
def search_similar_products(image_path, index, metadata_df, top_k=5):
"""
Search for similar products given a local image
Args:
image_path (str): Path to the query image
index: FAISS index
metadata_df: DataFrame containing product metadata
top_k (int): Number of similar items to return
Returns:
list: List of dictionaries containing similar product information
"""
logging.info(f"\nGenerating embedding for image: {image_path}")
# Generate embedding for the query image
output = replicate.run(
"krthr/clip-embeddings:1c0371070cb827ec3c7f2f28adcdde54b50dcd239aa6faea0bc98b174ef03fb4",
input={"image": image_path}
)
if 'embedding' in output:
query_embedding = np.array(output['embedding'])
else:
query_embedding = np.array(output).astype('float32').reshape(1, -1)
logging.info("Searching FAISS index...")
# Search the index
distances, indices = index.search(np.array([query_embedding]), top_k)
logging.info("Processing search results...")
# Get the metadata for the similar products
results = []
for idx, distance in zip(indices[0], distances[0]):
result = {
'product_url': metadata_df.iloc[idx]['product_url'],
'image_url': metadata_df.iloc[idx]['image_url'],
'distance': float(distance)
}
results.append(result)
return results
def find_similar_ikea_products(image_input, index, metadata_df, top_k=5, process_detections_list=None):
"""
Convenience function to find similar IKEA products
Args:
image_input (str): Path to local image file or URL of image
top_k (int): Number of similar items to return
process_detections_list (list, optional): List of detection dictionaries containing bbox and label
"""
logging.info("\nProcessing full image...")
# First process the full image
logging.info("\nProcessing full image:")
# Handle both local files and URLs
if image_input.startswith(('http://', 'https://')):
logging.info(f"Processing URL image: {image_input}")
image_path = image_input
else:
logging.info(f"Processing local image: {image_input}")
if not os.path.exists(image_input):
raise FileNotFoundError(f"Local image file not found: {image_input}")
image_path = open(image_input, "rb")
results = search_similar_products(image_path, index, metadata_df, top_k)
logging.info(f"\nTop {top_k} similar products (overall image):")
for i, result in enumerate(results, 1):
logging.info(f"\n{i}. Similarity score: {1 / (1 + result['distance']):.3f}")
logging.info(f"Product URL: {result['product_url']}")
logging.info(f"Image URL: {result['image_url']}")
# If detections are provided, process sub-images
if process_detections_list:
logging.info("\nProcessing object detections...")
# Load the image
if isinstance(image_input, str) and image_input.startswith(('http://', 'https://')):
image_path = image_input
else:
# local image processing -
image = Image.open(image_input)
# Process each detection
detections = process_detections_list['detections']
for i, detection in enumerate(detections):
logging.info(f"\nProcessing detection {i+1}: {detection['label']}")
logging.info(f"Confidence: {detection['confidence']:.3f}")
# Extract bounding box coordinates
x1, y1, x2, y2 = detection['bbox']
logging.info(f"Cropping image to bbox: ({x1}, {y1}, {x2}, {y2})")
# Crop the image to the bounding box
cropped = image.crop((x1, y1, x2, y2))
# Save the cropped image temporarily
temp_path = f"temp_crop_{i}.jpg"
cropped.save(temp_path)
logging.info(f"Saved temporary crop to: {temp_path}")
try:
# Find similar products for this crop
logging.info(f"\nFinding similar products for {detection['label']}:")
sub_results = search_similar_products(temp_path, index, metadata_df, top_k)
logging.info(f"\nTop {top_k} similar products for {detection['label']}:")
for j, result in enumerate(sub_results, 1):
logging.info(f"\n{j}. Similarity score: {1 / (1 + result['distance']):.3f}")
logging.info(f"Product URL: {result['product_url']}")
logging.info(f"Image URL: {result['image_url']}")
except Exception as e:
logging.error(f"Error processing detection {i+1}: {e}")
finally:
# Clean up temporary file
if os.path.exists(temp_path):
logging.info(f"Cleaning up temporary file: {temp_path}")
os.remove(temp_path)
return results
def generate_image(prompt, control_image, guidance_scale, output_quality, negative_prompt, control_strength, image_to_image_strength, control_type):
logging.info("\nGenerating image with Stable Diffusion...")
logging.info(f"Prompt: {prompt}")
if isinstance(control_image, str):
image = open(control_image, "rb")
else:
image = control_image
input = {
"prompt": prompt,
"control_image": image,
"guidance_scale": guidance_scale,
"output_quality": output_quality,
"negative_prompt": negative_prompt,
"control_strength": control_strength,
"image_to_image_strength": image_to_image_strength,
"control_type": control_type
}
logging.info("Running image generation model...")
output = replicate.run(
"xlabs-ai/flux-dev-controlnet:9a8db105db745f8b11ad3afe5c8bd892428b2a43ade0b67edc4e0ccd52ff2fda",
input=input
)
logging.info("Saving generated images...")
for index, item in enumerate(output):
with open(f"output_{index}.jpg", "wb") as file:
file.write(item.read())
logging.info(f"Saved output_{index}.jpg")
return output
# step 2
def analyze_image(image_path):
logging.info(f"\nAnalyzing image with GPT-4V: {image_path}")
class ImageAnalysis(BaseModel):
objects: list[str] = Field(description="A list of objects in the image")
# Function to encode the image
def encode_image(image_path):
logging.info("Encoding image to base64...")
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
# Encode the image
encoded_image = encode_image(image_path)
logging.info("Sending request to GPT-4o-mini vision...")
completion = client.beta.chat.completions.parse(
model="gpt-4o-mini",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "Analyze this image and list the main objects of furniture in the image."},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{encoded_image}"
},
},
],
}
],
response_format=ImageAnalysis,
)
analysis = completion.choices[0].message.parsed
main_objects = ', '.join(analysis.objects)
logging.info(f"""
Objects: {', '.join(analysis.objects)}
""")
return main_objects
# step 3
def detect_objects(image_path, main_objects):
logging.info(f"\nDetecting objects in image: {image_path}")
image = open(image_path, "rb")
input = {
"image": image,
"query": main_objects,
"box_threshold": 0.2,
"text_threshold": 0.2
}
logging.info("Running object detection model...")
output = replicate.run(
"adirik/grounding-dino:efd10a8ddc57ea28773327e881ce95e20cc1d734c589f7dd01d2036921ed78aa",
input=input
)
logging.info("Detection results:")
logging.info(output)
return output
# step 4, 5
def search_index(image_path, index, metadata_df, main_objects = None, top_k=5):
logging.info(f"\nSearching index for similar products to: {image_path}")
#process_detections_list = detect_objects(image_path, main_objects)
results = find_similar_ikea_products(image_path, index, metadata_df, top_k=5)
return results
def main(prompt, control_image, index, metadata_df):
"""
Main function to orchestrate the entire inference pipeline
Args:
prompt (str): Text prompt for image generation
control_image: Input image for controlled generation
index: FAISS index for similarity search
metadata_df: DataFrame containing product metadata
Returns:
dict: Results containing generated images, detected objects, and similar products
"""
logging.info("\nStarting inference pipeline...")
results = {}
logging.info("\nStep 0: Generating a detailed prompt for the diffusion model...")
# Step 0: Generate a detailed prompt for the diffusion model
prompt = generate_prompt_for_flux(prompt)
prompt += ", realistic, high quality, 8K, photorealistic, high detail, sharp focus"
logging.info(f"\nGenerated prompt: {prompt}")
logging.info("\nStep 1: Generating image...")
# Step 1: Generate image
generated_images = generate_image(
prompt=prompt,
control_image=control_image,
guidance_scale=2.5,
output_quality=100,
negative_prompt="low quality, ugly, distorted, artefacts, low detail, low quality, low resolution, low definition, imaginary, unrealistic, fictional",
control_strength=0.5,
image_to_image_strength=0.1,
control_type="canny"
)
results['generated_images'] = generated_images
results['generated_image_path'] = "output_0.jpg"
# logging.info("\nStep 2: Analyzing generated image...")
# # Step 2: Analyze generated image with GPT-4V
obj_detection = False
if obj_detection:
main_objects = analyze_image("output_0.jpg") # Using the first generated image
results['detected_furniture'] = main_objects
logging.info("\nSteps 3-5: Detecting objects and searching for similar products...")
# Step 3 & 4 & 5: Detect objects and search for similar products
similar_products = search_index(
image_path="output_0.jpg",
index=index,
metadata_df=metadata_df,
top_k=5
)
results['similar_products'] = similar_products
return results
def load_index():
logging.info("\nLoading FAISS index...")
return faiss.read_index("data/ikea_faiss.index")
def load_metadata():
logging.info("Loading metadata...")
return pd.read_csv("data/filtered_metadata.csv")
if __name__ == "__main__":
# Example usage
logging.info("\nStarting program...")
if len(sys.argv) != 3:
logging.error("Usage: python inference.py <prompt> <link to control image>")
sys.exit(1)
prompt = sys.argv[1]
control_image = sys.argv[2]
logging.info("\nLoading required data...")
# Load your FAISS index and metadata_df here
index = load_index()
metadata_df = load_metadata()
results = main(prompt, control_image, index, metadata_df)
logging.info("\nPipeline completed successfully!") |