Spaces:
Sleeping
Sleeping
File size: 1,272 Bytes
2893c3c cd1c9b1 2893c3c cd1c9b1 2893c3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import gradio as gr
import numpy as np
from PIL import Image
import torch
import matplotlib.pyplot as plt
# Modelo
model = torch.hub.load('ultralytics/yolov5', 'custom', path='bestyolo5.pt')
def detect(img):
img_arr = np.array(img)
results = model(img_arr)
fig, ax = plt.subplots()
ax.imshow(img_arr)
cattle_count = 0
for *xyxy, conf, cls in results.xyxy[0].cpu().numpy():
x1, y1, x2, y2 = map(int, xyxy)
label = model.names[int(cls)]
if label == 'cattle':
cattle_count += 1
ax.add_patch(plt.Rectangle((x1, y1), x2-x1, y2-y1, fill=False, color='red', linewidth=2))
ax.text(x1, y1, f'{label} {conf:.2f}', color='white', fontsize=8, bbox={'facecolor': 'red', 'alpha': 0.5})
plt.axis('off')
fig.canvas.draw()
pil_img = Image.fromarray(np.array(fig.canvas.renderer._renderer))
plt.close(fig)
return pil_img, cattle_count
# Gradio
iface = gr.Interface(
fn=detect,
inputs=gr.Image(type="pil"),
outputs=[gr.Image(type="pil"), gr.Textbox(label="Number of Cattle Detected")],
title="YOLOv5 Cattle Counter",
description="Object detector trained to count cattle using YOLOv5.",
examples=[["example1.jpg"]]
)
if __name__ == "__main__":
iface.launch()
|