rmayormartins's picture
Subindo arquivos7
1078a0a
import os
import time
import gradio as gr
import torch
from PIL import Image
from gtts import gTTS
import numpy as np
import cv2
from transformers import BlipProcessor, BlipForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM
from huggingface_hub import login
# meu tokennnupv2 .
hf_token = os.getenv("HUGGINGFACE_TOKEN2")
if hf_token:
login(token=hf_token)
# YOLOv5
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
# Calcula a GLCM e o contrastee
def calculate_glcm_contrast(image):
gray_image = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2GRAY)
max_value = gray_image.max() + 1
glcm = np.zeros((max_value, max_value), dtype=np.float64)
for i in range(gray_image.shape[0] - 1):
for j in range(gray_image.shape[1] - 1):
x = gray_image[i, j]
y = gray_image[i + 1, j + 1]
glcm[x, y] += 1
glcm = glcm / glcm.sum()
contrast = 0.0
for i in range(max_value):
for j in range(max_value):
contrast += (i - j) ** 2 * glcm[i, j]
return contrast
# Analisar a textura e a temperatura de cor
def analyze_image_properties(image):
# Análise de cor (média RGB)
image_rgb = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB)
avg_color_per_row = np.average(image_rgb, axis=0)
avg_color = np.average(avg_color_per_row, axis=0)
# Determinar temperatura da cor
if avg_color[0] > avg_color[2]: # Mais vermelho que azul
temperature = 'quente'
else:
temperature = 'fria'
# Análise de textura
texture_contrast = calculate_glcm_contrast(image)
texture = 'lisa' if texture_contrast < 100 else 'texturizada'
return temperature, texture
# Descrever imagem usando BLIP
def describe_image(image):
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
inputs = processor(image, return_tensors="pt")
out = model.generate(**inputs)
description = processor.decode(out[0], skip_special_tokens=True)
return description
# Traduzir descrição para pt
def translate_description(description):
model_name = 'Helsinki-NLP/opus-mt-tc-big-en-pt'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
translated = model.generate(**tokenizer(description, return_tensors="pt", padding=True))
translated_text = tokenizer.decode(translated[0], skip_special_tokens=True)
return translated_text
# Processar imagem e gerar saída de voz
def process_image(image):
# Detecção de objetos
results = model(image)
detected_image = results.render()[0]
# Análise de textura e temperatura de cor
temperature, texture = analyze_image_properties(image)
# Descrição da imagem
description = describe_image(image)
translated_description = translate_description(description)
# Construir a descrição final
final_description = f"{translated_description}. A textura é {texture} e a temperatura de cor é {temperature}."
# Texto para voz
tts = gTTS(text=final_description, lang='pt')
attempts = 0
while attempts < 5:
try:
tts.save("output.mp3")
break
except gTTS.tts.gTTSError as e:
if e.r.status_code == 429:
print("Too many requests. Waiting before retrying...")
time.sleep(5)
attempts += 1
else:
raise e
# Saída
return Image.fromarray(detected_image), final_description, "output.mp3"
#
example_image_path = "example1.JPG"
# Gradio
iface = gr.Interface(
fn=process_image,
inputs=gr.Image(type="pil"),
outputs=[gr.Image(type="pil"), gr.Textbox(), gr.Audio(type="filepath")],
examples=[example_image_path]
)
iface.launch()