rmayormartins's picture
Subindo arquivos33137
2f3c50a
raw
history blame
4.13 kB
import os
import time
import gradio as gr
import torch
from PIL import Image
from gtts import gTTS
import numpy as np
import cv2
from transformers import BlipProcessor, BlipForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM
from huggingface_hub import login
# Ler o token da variável de ambiente
hf_token = os.getenv("HUGGINGFACE_TOKEN")
if hf_token:
login(token=hf_token)
# Carregar o modelo YOLOv5
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
# Função para calcular a GLCM e o contraste manualmente
def calculate_glcm_contrast(image):
gray_image = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2GRAY)
max_value = gray_image.max() + 1
glcm = np.zeros((max_value, max_value), dtype=np.float64)
for i in range(gray_image.shape[0] - 1):
for j in range(gray_image.shape[1] - 1):
x = gray_image[i, j]
y = gray_image[i + 1, j + 1]
glcm[x, y] += 1
glcm = glcm / glcm.sum()
contrast = 0.0
for i in range(max_value):
for j in range(max_value):
contrast += (i - j) ** 2 * glcm[i, j]
return contrast
# Função para analisar a textura e a temperatura de cor
def analyze_image_properties(image):
# Análise de cor (média RGB)
image_rgb = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB)
avg_color_per_row = np.average(image_rgb, axis=0)
avg_color = np.average(avg_color_per_row, axis=0)
temperature = 'fria' if np.mean(avg_color) < 128 else 'quente'
# Análise de textura
texture_contrast = calculate_glcm_contrast(image)
texture = 'lisa' if texture_contrast < 100 else 'texturizada'
return temperature, texture
# Função para descrever imagem usando BLIP
def describe_image(image):
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
inputs = processor(image, return_tensors="pt")
out = model.generate(**inputs)
description = processor.decode(out[0], skip_special_tokens=True)
return description
# Função para traduzir descrição para português
def translate_description(description):
model_name = 'Helsinki-NLP/opus-mt-tc-big-en-pt'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
translated = model.generate(**tokenizer(description, return_tensors="pt", padding=True))
translated_text = tokenizer.decode(translated[0], skip_special_tokens=True)
return translated_text
# Função principal para processar imagem e gerar saída de voz
def process_image(image):
# Detecção de objetos
results = model(image)
detected_image = results.render()[0]
# Análise de cor (média RGB)
mean_rgb = np.mean(np.array(image), axis=(0, 1))
# Análise de textura e temperatura de cor
temperature, texture = analyze_image_properties(image)
# Descrição da imagem
description = describe_image(image)
translated_description = translate_description(description)
# Construir a descrição final
final_description = f"{translated_description}. A textura é {texture} e a temperatura de cor é {temperature}."
# Texto para voz
tts = gTTS(text=final_description, lang='pt')
attempts = 0
while attempts < 5:
try:
tts.save("output.mp3")
break
except gTTS.tts.gTTSError as e:
if e.r.status_code == 429:
print("Too many requests. Waiting before retrying...")
time.sleep(5)
attempts += 1
else:
raise e
# Retornar imagem com detecções, descrição e áudio
return Image.fromarray(detected_image), final_description, "output.mp3"
# Carregar imagem de exemplo diretamente do código
example_image_path = "example1.JPG"
# Interface Gradio
iface = gr.Interface(
fn=process_image,
inputs=gr.Image(type="pil"),
outputs=[gr.Image(type="pil"), gr.Textbox(), gr.Audio(type="filepath")],
examples=[example_image_path]
)
iface.launch()