Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,270 Bytes
61c2d32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
import unittest
import torch
from detectron2.config import get_cfg
from detectron2.export import scripting_with_instances
from detectron2.layers import ShapeSpec
from detectron2.modeling.backbone import build_backbone
from detectron2.modeling.proposal_generator import RPN, build_proposal_generator
from detectron2.modeling.proposal_generator.proposal_utils import (
add_ground_truth_to_proposals,
find_top_rpn_proposals,
)
from detectron2.structures import Boxes, ImageList, Instances, RotatedBoxes
from detectron2.utils.events import EventStorage
logger = logging.getLogger(__name__)
class RPNTest(unittest.TestCase):
def get_gt_and_features(self):
num_images = 2
images_tensor = torch.rand(num_images, 20, 30)
image_sizes = [(10, 10), (20, 30)]
images = ImageList(images_tensor, image_sizes)
image_shape = (15, 15)
num_channels = 1024
features = {"res4": torch.rand(num_images, num_channels, 1, 2)}
gt_boxes = torch.tensor([[1, 1, 3, 3], [2, 2, 6, 6]], dtype=torch.float32)
gt_instances = Instances(image_shape)
gt_instances.gt_boxes = Boxes(gt_boxes)
return (gt_instances, features, images, image_sizes)
def test_rpn(self):
torch.manual_seed(121)
cfg = get_cfg()
backbone = build_backbone(cfg)
proposal_generator = RPN(cfg, backbone.output_shape())
(gt_instances, features, images, image_sizes) = self.get_gt_and_features()
with EventStorage(): # capture events in a new storage to discard them
proposals, proposal_losses = proposal_generator(
images, features, [gt_instances[0], gt_instances[1]]
)
expected_losses = {
"loss_rpn_cls": torch.tensor(0.08011703193),
"loss_rpn_loc": torch.tensor(0.101470276),
}
for name in expected_losses.keys():
err_msg = "proposal_losses[{}] = {}, expected losses = {}".format(
name, proposal_losses[name], expected_losses[name]
)
self.assertTrue(torch.allclose(proposal_losses[name], expected_losses[name]), err_msg)
self.assertEqual(len(proposals), len(image_sizes))
for proposal, im_size in zip(proposals, image_sizes):
self.assertEqual(proposal.image_size, im_size)
expected_proposal_box = torch.tensor([[0, 0, 10, 10], [7.2702, 0, 10, 10]])
expected_objectness_logit = torch.tensor([0.1596, -0.0007])
self.assertTrue(
torch.allclose(proposals[0].proposal_boxes.tensor, expected_proposal_box, atol=1e-4)
)
self.assertTrue(
torch.allclose(proposals[0].objectness_logits, expected_objectness_logit, atol=1e-4)
)
def verify_rpn(self, conv_dims, expected_conv_dims):
torch.manual_seed(121)
cfg = get_cfg()
cfg.MODEL.RPN.CONV_DIMS = conv_dims
backbone = build_backbone(cfg)
proposal_generator = RPN(cfg, backbone.output_shape())
for k, conv in enumerate(proposal_generator.rpn_head.conv):
self.assertEqual(expected_conv_dims[k], conv.out_channels)
return proposal_generator
def test_rpn_larger_num_convs(self):
conv_dims = [64, 64, 64, 64, 64]
proposal_generator = self.verify_rpn(conv_dims, conv_dims)
(gt_instances, features, images, image_sizes) = self.get_gt_and_features()
with EventStorage(): # capture events in a new storage to discard them
proposals, proposal_losses = proposal_generator(
images, features, [gt_instances[0], gt_instances[1]]
)
expected_losses = {
"loss_rpn_cls": torch.tensor(0.08122821152),
"loss_rpn_loc": torch.tensor(0.10064548254),
}
for name in expected_losses.keys():
err_msg = "proposal_losses[{}] = {}, expected losses = {}".format(
name, proposal_losses[name], expected_losses[name]
)
self.assertTrue(torch.allclose(proposal_losses[name], expected_losses[name]), err_msg)
def test_rpn_conv_dims_not_set(self):
conv_dims = [-1, -1, -1]
expected_conv_dims = [1024, 1024, 1024]
self.verify_rpn(conv_dims, expected_conv_dims)
def test_rpn_scriptability(self):
cfg = get_cfg()
proposal_generator = RPN(cfg, {"res4": ShapeSpec(channels=1024, stride=16)}).eval()
num_images = 2
images_tensor = torch.rand(num_images, 30, 40)
image_sizes = [(32, 32), (30, 40)]
images = ImageList(images_tensor, image_sizes)
features = {"res4": torch.rand(num_images, 1024, 1, 2)}
fields = {"proposal_boxes": Boxes, "objectness_logits": torch.Tensor}
proposal_generator_ts = scripting_with_instances(proposal_generator, fields)
proposals, _ = proposal_generator(images, features)
proposals_ts, _ = proposal_generator_ts(images, features)
for proposal, proposal_ts in zip(proposals, proposals_ts):
self.assertEqual(proposal.image_size, proposal_ts.image_size)
self.assertTrue(
torch.equal(proposal.proposal_boxes.tensor, proposal_ts.proposal_boxes.tensor)
)
self.assertTrue(torch.equal(proposal.objectness_logits, proposal_ts.objectness_logits))
def test_rrpn(self):
torch.manual_seed(121)
cfg = get_cfg()
cfg.MODEL.PROPOSAL_GENERATOR.NAME = "RRPN"
cfg.MODEL.ANCHOR_GENERATOR.NAME = "RotatedAnchorGenerator"
cfg.MODEL.ANCHOR_GENERATOR.SIZES = [[32, 64]]
cfg.MODEL.ANCHOR_GENERATOR.ASPECT_RATIOS = [[0.25, 1]]
cfg.MODEL.ANCHOR_GENERATOR.ANGLES = [[0, 60]]
cfg.MODEL.RPN.BBOX_REG_WEIGHTS = (1, 1, 1, 1, 1)
cfg.MODEL.RPN.HEAD_NAME = "StandardRPNHead"
backbone = build_backbone(cfg)
proposal_generator = build_proposal_generator(cfg, backbone.output_shape())
num_images = 2
images_tensor = torch.rand(num_images, 20, 30)
image_sizes = [(10, 10), (20, 30)]
images = ImageList(images_tensor, image_sizes)
image_shape = (15, 15)
num_channels = 1024
features = {"res4": torch.rand(num_images, num_channels, 1, 2)}
gt_boxes = torch.tensor([[2, 2, 2, 2, 0], [4, 4, 4, 4, 0]], dtype=torch.float32)
gt_instances = Instances(image_shape)
gt_instances.gt_boxes = RotatedBoxes(gt_boxes)
with EventStorage(): # capture events in a new storage to discard them
proposals, proposal_losses = proposal_generator(
images, features, [gt_instances[0], gt_instances[1]]
)
expected_losses = {
"loss_rpn_cls": torch.tensor(0.04291602224),
"loss_rpn_loc": torch.tensor(0.145077362),
}
for name in expected_losses.keys():
err_msg = "proposal_losses[{}] = {}, expected losses = {}".format(
name, proposal_losses[name], expected_losses[name]
)
self.assertTrue(torch.allclose(proposal_losses[name], expected_losses[name]), err_msg)
expected_proposal_box = torch.tensor(
[
[-1.77999556, 0.78155339, 68.04367828, 14.78156471, 60.59333801],
[13.82740974, -1.50282836, 34.67269897, 29.19676590, -3.81942749],
[8.10392570, -0.99071521, 145.39100647, 32.13126373, 3.67242432],
[5.00000000, 4.57370186, 10.00000000, 9.14740372, 0.89196777],
]
)
expected_objectness_logit = torch.tensor([0.10924313, 0.09881870, 0.07649877, 0.05858029])
torch.set_printoptions(precision=8, sci_mode=False)
self.assertEqual(len(proposals), len(image_sizes))
proposal = proposals[0]
# It seems that there's some randomness in the result across different machines:
# This test can be run on a local machine for 100 times with exactly the same result,
# However, a different machine might produce slightly different results,
# thus the atol here.
err_msg = "computed proposal boxes = {}, expected {}".format(
proposal.proposal_boxes.tensor, expected_proposal_box
)
self.assertTrue(
torch.allclose(proposal.proposal_boxes.tensor[:4], expected_proposal_box, atol=1e-5),
err_msg,
)
err_msg = "computed objectness logits = {}, expected {}".format(
proposal.objectness_logits, expected_objectness_logit
)
self.assertTrue(
torch.allclose(proposal.objectness_logits[:4], expected_objectness_logit, atol=1e-5),
err_msg,
)
def test_find_rpn_proposals_inf(self):
N, Hi, Wi, A = 3, 3, 3, 3
proposals = [torch.rand(N, Hi * Wi * A, 4)]
pred_logits = [torch.rand(N, Hi * Wi * A)]
pred_logits[0][1][3:5].fill_(float("inf"))
find_top_rpn_proposals(proposals, pred_logits, [(10, 10)], 0.5, 1000, 1000, 0, False)
def test_find_rpn_proposals_tracing(self):
N, Hi, Wi, A = 3, 50, 50, 9
proposal = torch.rand(N, Hi * Wi * A, 4)
pred_logit = torch.rand(N, Hi * Wi * A)
def func(proposal, logit, image_size):
r = find_top_rpn_proposals(
[proposal], [logit], [image_size], 0.7, 1000, 1000, 0, False
)[0]
size = r.image_size
if not isinstance(size, torch.Tensor):
size = torch.tensor(size)
return (size, r.proposal_boxes.tensor, r.objectness_logits)
other_inputs = []
# test that it generalizes to other shapes
for Hi, Wi, shp in [(30, 30, 60), (10, 10, 800)]:
other_inputs.append(
(
torch.rand(N, Hi * Wi * A, 4),
torch.rand(N, Hi * Wi * A),
torch.tensor([shp, shp]),
)
)
torch.jit.trace(
func, (proposal, pred_logit, torch.tensor([100, 100])), check_inputs=other_inputs
)
def test_append_gt_to_proposal(self):
proposals = Instances(
(10, 10),
**{
"proposal_boxes": Boxes(torch.empty((0, 4))),
"objectness_logits": torch.tensor([]),
"custom_attribute": torch.tensor([]),
}
)
gt_boxes = Boxes(torch.tensor([[0, 0, 1, 1]]))
self.assertRaises(AssertionError, add_ground_truth_to_proposals, [gt_boxes], [proposals])
gt_instances = Instances((10, 10))
gt_instances.gt_boxes = gt_boxes
self.assertRaises(
AssertionError, add_ground_truth_to_proposals, [gt_instances], [proposals]
)
gt_instances.custom_attribute = torch.tensor([1])
gt_instances.custom_attribute2 = torch.tensor([1])
new_proposals = add_ground_truth_to_proposals([gt_instances], [proposals])[0]
self.assertEqual(new_proposals.custom_attribute[0], 1)
# new proposals should only include the attributes in proposals
self.assertRaises(AttributeError, lambda: new_proposals.custom_attribute2)
if __name__ == "__main__":
unittest.main()
|