File size: 8,458 Bytes
61c2d32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
#!/usr/bin/env python
# Copyright (c) Facebook, Inc. and its affiliates.


import os
import tempfile
import unittest
import torch
from omegaconf import OmegaConf

from detectron2 import model_zoo
from detectron2.config import configurable, downgrade_config, get_cfg, upgrade_config
from detectron2.layers import ShapeSpec
from detectron2.modeling import build_model

_V0_CFG = """
MODEL:
  RPN_HEAD:
    NAME: "TEST"
VERSION: 0
"""

_V1_CFG = """
MODEL:
  WEIGHT: "/path/to/weight"
"""


class TestConfigVersioning(unittest.TestCase):
    def test_upgrade_downgrade_consistency(self):
        cfg = get_cfg()
        # check that custom is preserved
        cfg.USER_CUSTOM = 1

        down = downgrade_config(cfg, to_version=0)
        up = upgrade_config(down)
        self.assertTrue(up == cfg)

    def _merge_cfg_str(self, cfg, merge_str):
        f = tempfile.NamedTemporaryFile(mode="w", suffix=".yaml", delete=False)
        try:
            f.write(merge_str)
            f.close()
            cfg.merge_from_file(f.name)
        finally:
            os.remove(f.name)
        return cfg

    def test_auto_upgrade(self):
        cfg = get_cfg()
        latest_ver = cfg.VERSION
        cfg.USER_CUSTOM = 1

        self._merge_cfg_str(cfg, _V0_CFG)

        self.assertEqual(cfg.MODEL.RPN.HEAD_NAME, "TEST")
        self.assertEqual(cfg.VERSION, latest_ver)

    def test_guess_v1(self):
        cfg = get_cfg()
        latest_ver = cfg.VERSION
        self._merge_cfg_str(cfg, _V1_CFG)
        self.assertEqual(cfg.VERSION, latest_ver)


class _TestClassA(torch.nn.Module):
    @configurable
    def __init__(self, arg1, arg2, arg3=3):
        super().__init__()
        self.arg1 = arg1
        self.arg2 = arg2
        self.arg3 = arg3
        assert arg1 == 1
        assert arg2 == 2
        assert arg3 == 3

    @classmethod
    def from_config(cls, cfg):
        args = {"arg1": cfg.ARG1, "arg2": cfg.ARG2}
        return args


class _TestClassB(_TestClassA):
    @configurable
    def __init__(self, input_shape, arg1, arg2, arg3=3):
        """
        Doc of _TestClassB
        """
        assert input_shape == "shape"
        super().__init__(arg1, arg2, arg3)

    @classmethod
    def from_config(cls, cfg, input_shape):  # test extra positional arg in from_config
        args = {"arg1": cfg.ARG1, "arg2": cfg.ARG2}
        args["input_shape"] = input_shape
        return args


class _LegacySubClass(_TestClassB):
    # an old subclass written in cfg style
    def __init__(self, cfg, input_shape, arg4=4):
        super().__init__(cfg, input_shape)
        assert self.arg1 == 1
        assert self.arg2 == 2
        assert self.arg3 == 3


class _NewSubClassNewInit(_TestClassB):
    # test new subclass with a new __init__
    @configurable
    def __init__(self, input_shape, arg4=4, **kwargs):
        super().__init__(input_shape, **kwargs)
        assert self.arg1 == 1
        assert self.arg2 == 2
        assert self.arg3 == 3


class _LegacySubClassNotCfg(_TestClassB):
    # an old subclass written in cfg style, but argument is not called "cfg"
    def __init__(self, config, input_shape):
        super().__init__(config, input_shape)
        assert self.arg1 == 1
        assert self.arg2 == 2
        assert self.arg3 == 3


class _TestClassC(_TestClassB):
    @classmethod
    def from_config(cls, cfg, input_shape, **kwargs):  # test extra kwarg overwrite
        args = {"arg1": cfg.ARG1, "arg2": cfg.ARG2}
        args["input_shape"] = input_shape
        args.update(kwargs)
        return args


class _TestClassD(_TestClassA):
    @configurable
    def __init__(self, input_shape: ShapeSpec, arg1: int, arg2, arg3=3):
        assert input_shape == "shape"
        super().__init__(arg1, arg2, arg3)

    # _TestClassA.from_config does not have input_shape args.
    # Test whether input_shape will be forwarded to __init__


@configurable(from_config=lambda cfg, arg2: {"arg1": cfg.ARG1, "arg2": arg2, "arg3": cfg.ARG3})
def _test_func(arg1, arg2=2, arg3=3, arg4=4):
    return arg1, arg2, arg3, arg4


class TestConfigurable(unittest.TestCase):
    def testInitWithArgs(self):
        _ = _TestClassA(arg1=1, arg2=2, arg3=3)
        _ = _TestClassB("shape", arg1=1, arg2=2)
        _ = _TestClassC("shape", arg1=1, arg2=2)
        _ = _TestClassD("shape", arg1=1, arg2=2, arg3=3)

    def testPatchedAttr(self):
        self.assertTrue("Doc" in _TestClassB.__init__.__doc__)
        self.assertEqual(_TestClassD.__init__.__annotations__["arg1"], int)

    def testInitWithCfg(self):
        cfg = get_cfg()
        cfg.ARG1 = 1
        cfg.ARG2 = 2
        cfg.ARG3 = 3
        _ = _TestClassA(cfg)
        _ = _TestClassB(cfg, input_shape="shape")
        _ = _TestClassC(cfg, input_shape="shape")
        _ = _TestClassD(cfg, input_shape="shape")
        _ = _LegacySubClass(cfg, input_shape="shape")
        _ = _NewSubClassNewInit(cfg, input_shape="shape")
        _ = _LegacySubClassNotCfg(cfg, input_shape="shape")
        with self.assertRaises(TypeError):
            # disallow forwarding positional args to __init__ since it's prone to errors
            _ = _TestClassD(cfg, "shape")

        # call with kwargs instead
        _ = _TestClassA(cfg=cfg)
        _ = _TestClassB(cfg=cfg, input_shape="shape")
        _ = _TestClassC(cfg=cfg, input_shape="shape")
        _ = _TestClassD(cfg=cfg, input_shape="shape")
        _ = _LegacySubClass(cfg=cfg, input_shape="shape")
        _ = _NewSubClassNewInit(cfg=cfg, input_shape="shape")
        _ = _LegacySubClassNotCfg(config=cfg, input_shape="shape")

    def testInitWithCfgOverwrite(self):
        cfg = get_cfg()
        cfg.ARG1 = 1
        cfg.ARG2 = 999  # wrong config
        with self.assertRaises(AssertionError):
            _ = _TestClassA(cfg, arg3=3)

        # overwrite arg2 with correct config later:
        _ = _TestClassA(cfg, arg2=2, arg3=3)
        _ = _TestClassB(cfg, input_shape="shape", arg2=2, arg3=3)
        _ = _TestClassC(cfg, input_shape="shape", arg2=2, arg3=3)
        _ = _TestClassD(cfg, input_shape="shape", arg2=2, arg3=3)

        # call with kwargs cfg=cfg instead
        _ = _TestClassA(cfg=cfg, arg2=2, arg3=3)
        _ = _TestClassB(cfg=cfg, input_shape="shape", arg2=2, arg3=3)
        _ = _TestClassC(cfg=cfg, input_shape="shape", arg2=2, arg3=3)
        _ = _TestClassD(cfg=cfg, input_shape="shape", arg2=2, arg3=3)

    def testInitWithCfgWrongArgs(self):
        cfg = get_cfg()
        cfg.ARG1 = 1
        cfg.ARG2 = 2
        with self.assertRaises(TypeError):
            _ = _TestClassB(cfg, "shape", not_exist=1)
        with self.assertRaises(TypeError):
            _ = _TestClassC(cfg, "shape", not_exist=1)
        with self.assertRaises(TypeError):
            _ = _TestClassD(cfg, "shape", not_exist=1)

    def testBadClass(self):
        class _BadClass1:
            @configurable
            def __init__(self, a=1, b=2):
                pass

        class _BadClass2:
            @configurable
            def __init__(self, a=1, b=2):
                pass

            def from_config(self, cfg):  # noqa
                pass

        class _BadClass3:
            @configurable
            def __init__(self, a=1, b=2):
                pass

            # bad name: must be cfg
            @classmethod
            def from_config(cls, config):  # noqa
                pass

        with self.assertRaises(AttributeError):
            _ = _BadClass1(a=1)

        with self.assertRaises(TypeError):
            _ = _BadClass2(a=1)

        with self.assertRaises(TypeError):
            _ = _BadClass3(get_cfg())

    def testFuncWithCfg(self):
        cfg = get_cfg()
        cfg.ARG1 = 10
        cfg.ARG3 = 30

        self.assertEqual(_test_func(1), (1, 2, 3, 4))
        with self.assertRaises(TypeError):
            _test_func(cfg)
        self.assertEqual(_test_func(cfg, arg2=2), (10, 2, 30, 4))
        self.assertEqual(_test_func(cfg, arg1=100, arg2=20), (100, 20, 30, 4))
        self.assertEqual(_test_func(cfg, arg1=100, arg2=20, arg4=40), (100, 20, 30, 40))

        self.assertTrue(callable(_test_func.from_config))

    def testOmegaConf(self):
        cfg = model_zoo.get_config("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml")
        cfg = OmegaConf.create(cfg.dump())
        if not torch.cuda.is_available():
            cfg.MODEL.DEVICE = "cpu"
        # test that a model can be built with omegaconf config as well
        build_model(cfg)