Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,458 Bytes
61c2d32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
#!/usr/bin/env python
# Copyright (c) Facebook, Inc. and its affiliates.
import os
import tempfile
import unittest
import torch
from omegaconf import OmegaConf
from detectron2 import model_zoo
from detectron2.config import configurable, downgrade_config, get_cfg, upgrade_config
from detectron2.layers import ShapeSpec
from detectron2.modeling import build_model
_V0_CFG = """
MODEL:
RPN_HEAD:
NAME: "TEST"
VERSION: 0
"""
_V1_CFG = """
MODEL:
WEIGHT: "/path/to/weight"
"""
class TestConfigVersioning(unittest.TestCase):
def test_upgrade_downgrade_consistency(self):
cfg = get_cfg()
# check that custom is preserved
cfg.USER_CUSTOM = 1
down = downgrade_config(cfg, to_version=0)
up = upgrade_config(down)
self.assertTrue(up == cfg)
def _merge_cfg_str(self, cfg, merge_str):
f = tempfile.NamedTemporaryFile(mode="w", suffix=".yaml", delete=False)
try:
f.write(merge_str)
f.close()
cfg.merge_from_file(f.name)
finally:
os.remove(f.name)
return cfg
def test_auto_upgrade(self):
cfg = get_cfg()
latest_ver = cfg.VERSION
cfg.USER_CUSTOM = 1
self._merge_cfg_str(cfg, _V0_CFG)
self.assertEqual(cfg.MODEL.RPN.HEAD_NAME, "TEST")
self.assertEqual(cfg.VERSION, latest_ver)
def test_guess_v1(self):
cfg = get_cfg()
latest_ver = cfg.VERSION
self._merge_cfg_str(cfg, _V1_CFG)
self.assertEqual(cfg.VERSION, latest_ver)
class _TestClassA(torch.nn.Module):
@configurable
def __init__(self, arg1, arg2, arg3=3):
super().__init__()
self.arg1 = arg1
self.arg2 = arg2
self.arg3 = arg3
assert arg1 == 1
assert arg2 == 2
assert arg3 == 3
@classmethod
def from_config(cls, cfg):
args = {"arg1": cfg.ARG1, "arg2": cfg.ARG2}
return args
class _TestClassB(_TestClassA):
@configurable
def __init__(self, input_shape, arg1, arg2, arg3=3):
"""
Doc of _TestClassB
"""
assert input_shape == "shape"
super().__init__(arg1, arg2, arg3)
@classmethod
def from_config(cls, cfg, input_shape): # test extra positional arg in from_config
args = {"arg1": cfg.ARG1, "arg2": cfg.ARG2}
args["input_shape"] = input_shape
return args
class _LegacySubClass(_TestClassB):
# an old subclass written in cfg style
def __init__(self, cfg, input_shape, arg4=4):
super().__init__(cfg, input_shape)
assert self.arg1 == 1
assert self.arg2 == 2
assert self.arg3 == 3
class _NewSubClassNewInit(_TestClassB):
# test new subclass with a new __init__
@configurable
def __init__(self, input_shape, arg4=4, **kwargs):
super().__init__(input_shape, **kwargs)
assert self.arg1 == 1
assert self.arg2 == 2
assert self.arg3 == 3
class _LegacySubClassNotCfg(_TestClassB):
# an old subclass written in cfg style, but argument is not called "cfg"
def __init__(self, config, input_shape):
super().__init__(config, input_shape)
assert self.arg1 == 1
assert self.arg2 == 2
assert self.arg3 == 3
class _TestClassC(_TestClassB):
@classmethod
def from_config(cls, cfg, input_shape, **kwargs): # test extra kwarg overwrite
args = {"arg1": cfg.ARG1, "arg2": cfg.ARG2}
args["input_shape"] = input_shape
args.update(kwargs)
return args
class _TestClassD(_TestClassA):
@configurable
def __init__(self, input_shape: ShapeSpec, arg1: int, arg2, arg3=3):
assert input_shape == "shape"
super().__init__(arg1, arg2, arg3)
# _TestClassA.from_config does not have input_shape args.
# Test whether input_shape will be forwarded to __init__
@configurable(from_config=lambda cfg, arg2: {"arg1": cfg.ARG1, "arg2": arg2, "arg3": cfg.ARG3})
def _test_func(arg1, arg2=2, arg3=3, arg4=4):
return arg1, arg2, arg3, arg4
class TestConfigurable(unittest.TestCase):
def testInitWithArgs(self):
_ = _TestClassA(arg1=1, arg2=2, arg3=3)
_ = _TestClassB("shape", arg1=1, arg2=2)
_ = _TestClassC("shape", arg1=1, arg2=2)
_ = _TestClassD("shape", arg1=1, arg2=2, arg3=3)
def testPatchedAttr(self):
self.assertTrue("Doc" in _TestClassB.__init__.__doc__)
self.assertEqual(_TestClassD.__init__.__annotations__["arg1"], int)
def testInitWithCfg(self):
cfg = get_cfg()
cfg.ARG1 = 1
cfg.ARG2 = 2
cfg.ARG3 = 3
_ = _TestClassA(cfg)
_ = _TestClassB(cfg, input_shape="shape")
_ = _TestClassC(cfg, input_shape="shape")
_ = _TestClassD(cfg, input_shape="shape")
_ = _LegacySubClass(cfg, input_shape="shape")
_ = _NewSubClassNewInit(cfg, input_shape="shape")
_ = _LegacySubClassNotCfg(cfg, input_shape="shape")
with self.assertRaises(TypeError):
# disallow forwarding positional args to __init__ since it's prone to errors
_ = _TestClassD(cfg, "shape")
# call with kwargs instead
_ = _TestClassA(cfg=cfg)
_ = _TestClassB(cfg=cfg, input_shape="shape")
_ = _TestClassC(cfg=cfg, input_shape="shape")
_ = _TestClassD(cfg=cfg, input_shape="shape")
_ = _LegacySubClass(cfg=cfg, input_shape="shape")
_ = _NewSubClassNewInit(cfg=cfg, input_shape="shape")
_ = _LegacySubClassNotCfg(config=cfg, input_shape="shape")
def testInitWithCfgOverwrite(self):
cfg = get_cfg()
cfg.ARG1 = 1
cfg.ARG2 = 999 # wrong config
with self.assertRaises(AssertionError):
_ = _TestClassA(cfg, arg3=3)
# overwrite arg2 with correct config later:
_ = _TestClassA(cfg, arg2=2, arg3=3)
_ = _TestClassB(cfg, input_shape="shape", arg2=2, arg3=3)
_ = _TestClassC(cfg, input_shape="shape", arg2=2, arg3=3)
_ = _TestClassD(cfg, input_shape="shape", arg2=2, arg3=3)
# call with kwargs cfg=cfg instead
_ = _TestClassA(cfg=cfg, arg2=2, arg3=3)
_ = _TestClassB(cfg=cfg, input_shape="shape", arg2=2, arg3=3)
_ = _TestClassC(cfg=cfg, input_shape="shape", arg2=2, arg3=3)
_ = _TestClassD(cfg=cfg, input_shape="shape", arg2=2, arg3=3)
def testInitWithCfgWrongArgs(self):
cfg = get_cfg()
cfg.ARG1 = 1
cfg.ARG2 = 2
with self.assertRaises(TypeError):
_ = _TestClassB(cfg, "shape", not_exist=1)
with self.assertRaises(TypeError):
_ = _TestClassC(cfg, "shape", not_exist=1)
with self.assertRaises(TypeError):
_ = _TestClassD(cfg, "shape", not_exist=1)
def testBadClass(self):
class _BadClass1:
@configurable
def __init__(self, a=1, b=2):
pass
class _BadClass2:
@configurable
def __init__(self, a=1, b=2):
pass
def from_config(self, cfg): # noqa
pass
class _BadClass3:
@configurable
def __init__(self, a=1, b=2):
pass
# bad name: must be cfg
@classmethod
def from_config(cls, config): # noqa
pass
with self.assertRaises(AttributeError):
_ = _BadClass1(a=1)
with self.assertRaises(TypeError):
_ = _BadClass2(a=1)
with self.assertRaises(TypeError):
_ = _BadClass3(get_cfg())
def testFuncWithCfg(self):
cfg = get_cfg()
cfg.ARG1 = 10
cfg.ARG3 = 30
self.assertEqual(_test_func(1), (1, 2, 3, 4))
with self.assertRaises(TypeError):
_test_func(cfg)
self.assertEqual(_test_func(cfg, arg2=2), (10, 2, 30, 4))
self.assertEqual(_test_func(cfg, arg1=100, arg2=20), (100, 20, 30, 4))
self.assertEqual(_test_func(cfg, arg1=100, arg2=20, arg4=40), (100, 20, 30, 40))
self.assertTrue(callable(_test_func.from_config))
def testOmegaConf(self):
cfg = model_zoo.get_config("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml")
cfg = OmegaConf.create(cfg.dump())
if not torch.cuda.is_available():
cfg.MODEL.DEVICE = "cpu"
# test that a model can be built with omegaconf config as well
build_model(cfg)
|