Spaces:
Runtime error
Runtime error
Update app.py
#24
by
Aditibaheti
- opened
app.py
CHANGED
@@ -1,19 +1,19 @@
|
|
1 |
import spaces
|
|
|
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
-
import random
|
5 |
from diffusers import DiffusionPipeline
|
6 |
import torch
|
7 |
from huggingface_hub import login
|
8 |
-
import os
|
9 |
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
|
12 |
# Set your Hugging Face token
|
13 |
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
14 |
-
if HUGGINGFACE_TOKEN is None:
|
15 |
-
raise ValueError("Hugging Face token not found. Please set the HUGGINGFACE_TOKEN environment variable.")
|
16 |
-
|
17 |
login(token=HUGGINGFACE_TOKEN)
|
18 |
|
19 |
# Path to your model repository and safetensors weights
|
@@ -28,16 +28,11 @@ pipeline = DiffusionPipeline.from_pretrained(
|
|
28 |
)
|
29 |
pipeline.load_lora_weights(lora_weights_path)
|
30 |
|
31 |
-
# Comment out the line for sequential CPU offloading
|
32 |
-
# pipeline.enable_sequential_cpu_offload()
|
33 |
-
|
34 |
pipeline = pipeline.to(device)
|
35 |
|
36 |
MAX_SEED = np.iinfo(np.int32).max
|
37 |
MAX_IMAGE_SIZE = 1024 # Reduce max image size to fit within memory constraints
|
38 |
|
39 |
-
CACHE_EXAMPLES = False
|
40 |
-
|
41 |
@spaces.GPU
|
42 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
43 |
if randomize_seed:
|
@@ -71,6 +66,7 @@ body {
|
|
71 |
margin: 0;
|
72 |
padding: 0;
|
73 |
}
|
|
|
74 |
#header {
|
75 |
background-color: #ff3f6c; /* Myntra's pink color */
|
76 |
color: white;
|
@@ -79,6 +75,7 @@ body {
|
|
79 |
font-size: 24px;
|
80 |
font-weight: bold;
|
81 |
}
|
|
|
82 |
#col-container {
|
83 |
margin: 0 auto;
|
84 |
max-width: 720px;
|
@@ -87,6 +84,7 @@ body {
|
|
87 |
border-radius: 8px;
|
88 |
box-shadow: 0 2px 8px rgba(0,0,0,0.1);
|
89 |
}
|
|
|
90 |
.gr-button {
|
91 |
background-color: #ff3f6c; /* Myntra's pink color */
|
92 |
color: white;
|
@@ -97,17 +95,21 @@ body {
|
|
97 |
cursor: pointer;
|
98 |
margin-top: 10px;
|
99 |
}
|
|
|
100 |
.gr-button:hover {
|
101 |
background-color: #e62e5c; /* Darker shade for hover effect */
|
102 |
}
|
|
|
103 |
.gr-textbox, .gr-slider, .gr-checkbox, .gr-accordion {
|
104 |
margin-bottom: 20px;
|
105 |
}
|
|
|
106 |
.gr-markdown {
|
107 |
text-align: center;
|
108 |
font-size: 24px;
|
109 |
margin-bottom: 20px;
|
110 |
}
|
|
|
111 |
.gr-image {
|
112 |
border: 1px solid #ebebeb;
|
113 |
border-radius: 8px;
|
@@ -194,10 +196,11 @@ with gr.Blocks(css=css) as demo:
|
|
194 |
)
|
195 |
|
196 |
gr.Examples(
|
197 |
-
examples=examples,
|
198 |
-
inputs=[prompt],
|
199 |
outputs=[result],
|
200 |
-
|
|
|
201 |
)
|
202 |
|
203 |
run_button.click(
|
|
|
1 |
import spaces
|
2 |
+
|
3 |
+
|
4 |
+
import os
|
5 |
+
import random
|
6 |
+
|
7 |
import gradio as gr
|
8 |
import numpy as np
|
|
|
9 |
from diffusers import DiffusionPipeline
|
10 |
import torch
|
11 |
from huggingface_hub import login
|
|
|
12 |
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
|
15 |
# Set your Hugging Face token
|
16 |
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
|
|
|
|
|
|
17 |
login(token=HUGGINGFACE_TOKEN)
|
18 |
|
19 |
# Path to your model repository and safetensors weights
|
|
|
28 |
)
|
29 |
pipeline.load_lora_weights(lora_weights_path)
|
30 |
|
|
|
|
|
|
|
31 |
pipeline = pipeline.to(device)
|
32 |
|
33 |
MAX_SEED = np.iinfo(np.int32).max
|
34 |
MAX_IMAGE_SIZE = 1024 # Reduce max image size to fit within memory constraints
|
35 |
|
|
|
|
|
36 |
@spaces.GPU
|
37 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
38 |
if randomize_seed:
|
|
|
66 |
margin: 0;
|
67 |
padding: 0;
|
68 |
}
|
69 |
+
|
70 |
#header {
|
71 |
background-color: #ff3f6c; /* Myntra's pink color */
|
72 |
color: white;
|
|
|
75 |
font-size: 24px;
|
76 |
font-weight: bold;
|
77 |
}
|
78 |
+
|
79 |
#col-container {
|
80 |
margin: 0 auto;
|
81 |
max-width: 720px;
|
|
|
84 |
border-radius: 8px;
|
85 |
box-shadow: 0 2px 8px rgba(0,0,0,0.1);
|
86 |
}
|
87 |
+
|
88 |
.gr-button {
|
89 |
background-color: #ff3f6c; /* Myntra's pink color */
|
90 |
color: white;
|
|
|
95 |
cursor: pointer;
|
96 |
margin-top: 10px;
|
97 |
}
|
98 |
+
|
99 |
.gr-button:hover {
|
100 |
background-color: #e62e5c; /* Darker shade for hover effect */
|
101 |
}
|
102 |
+
|
103 |
.gr-textbox, .gr-slider, .gr-checkbox, .gr-accordion {
|
104 |
margin-bottom: 20px;
|
105 |
}
|
106 |
+
|
107 |
.gr-markdown {
|
108 |
text-align: center;
|
109 |
font-size: 24px;
|
110 |
margin-bottom: 20px;
|
111 |
}
|
112 |
+
|
113 |
.gr-image {
|
114 |
border: 1px solid #ebebeb;
|
115 |
border-radius: 8px;
|
|
|
196 |
)
|
197 |
|
198 |
gr.Examples(
|
199 |
+
examples=examples,
|
200 |
+
inputs=[prompt],
|
201 |
outputs=[result],
|
202 |
+
fn=infer,
|
203 |
+
cache_examples=True,
|
204 |
)
|
205 |
|
206 |
run_button.click(
|