File size: 5,471 Bytes
3b61cb7
2823934
 
 
 
 
d006030
 
2823934
 
 
d006030
1c06068
d006030
 
c2633fb
 
 
a2a71ed
ff7f769
 
 
 
 
 
c2633fb
e268745
ff7f769
c167a04
2823934
2d9e42e
2823934
27ad00e
2823934
 
 
 
c2633fb
2823934
c2633fb
58a0d29
 
 
 
 
 
 
2823934
 
ff7f769
2823934
 
0f974f0
 
 
2823934
 
58a0d29
218ed9f
 
 
 
806f186
 
 
 
 
 
 
 
 
 
 
218ed9f
 
2823934
 
218ed9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2823934
 
 
 
 
 
 
 
 
806f186
 
2823934
 
 
 
 
 
58a0d29
2823934
 
 
 
 
 
 
218ed9f
2823934
 
 
 
58a0d29
2823934
 
 
58a0d29
2823934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d9e42e
2823934
 
 
 
 
 
 
2d9e42e
2823934
 
 
 
 
 
 
 
 
 
58a0d29
2823934
 
 
 
 
4ac8a6d
2823934
4ac8a6d
2823934
 
1c06068
 
 
 
 
 
0f974f0
2823934
58a0d29
 
ff7f769
2823934
 
e268745
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import spaces
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
from huggingface_hub import login
import os

device = "cuda" if torch.cuda.is_available() else "cpu"

# Set your Hugging Face token
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_HUGGINGFACE_TOKEN")
login(token=HUGGINGFACE_TOKEN)

# Path to your model repository and safetensors weights
base_model_repo = "stabilityai/stable-diffusion-3-medium-diffusers"
lora_weights_path = "./pytorch_lora_weights.safetensors"

# Load the base model
pipeline = DiffusionPipeline.from_pretrained(
    base_model_repo,
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
    use_auth_token=HUGGINGFACE_TOKEN
)
pipeline.load_lora_weights(lora_weights_path)

pipeline = pipeline.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024  # Reduce max image size to fit within memory constraints

@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
        
    generator = torch.Generator(device=device).manual_seed(seed)
    
    image = pipeline(
        prompt=prompt, 
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale, 
        num_inference_steps=num_inference_steps, 
        width=width, 
        height=height,
        generator=generator
    ).images[0] 
    
    return image

examples = [
    ["Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"],
    ["An astronaut riding a green horse"],
    ["A delicious ceviche cheesecake slice"],
]

css = """
body {
    background-color: #ffffff; /* Myntra's white background */
    color: #282c3f; /* Myntra's primary text color */
    font-family: 'Arial', sans-serif;
    margin: 0;
    padding: 0;
}

#header {
    background-color: #ff3f6c; /* Myntra's pink color */
    color: white;
    text-align: center;
    padding: 20px;
    font-size: 24px;
    font-weight: bold;
}

#col-container {
    margin: 0 auto;
    max-width: 720px;
    padding: 20px;
    border: 1px solid #ebebeb;
    border-radius: 8px;
    box-shadow: 0 2px 8px rgba(0,0,0,0.1);
}

.gr-button {
    background-color: #ff3f6c; /* Myntra's pink color */
    color: white;
    border: none;
    padding: 10px 20px;
    font-size: 16px;
    border-radius: 5px;
    cursor: pointer;
    margin-top: 10px;
}

.gr-button:hover {
    background-color: #e62e5c; /* Darker shade for hover effect */
}

.gr-textbox, .gr-slider, .gr-checkbox, .gr-accordion {
    margin-bottom: 20px;
}

.gr-markdown {
    text-align: center;
    font-size: 24px;
    margin-bottom: 20px;
}

.gr-image {
    border: 1px solid #ebebeb;
    border-radius: 8px;
    margin-top: 20px;
}
"""

if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(css=css) as demo:
    gr.HTML("<div id='header'>Myntra Text-to-Image Generation</div>")
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        Currently running on {power_device}.
        """)
        
        with gr.Row():
            prompt = gr.Textbox(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Generate", scale=0)
        
        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Textbox(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=True,
            )
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=512,
                    step=32,
                    value=512,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=2048,
                    step=32,
                    value=512,
                )
            
            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=7.5,
                )
                
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=30,
                )
        
        gr.Examples(
            examples=examples, 
            inputs=[prompt], 
            fn=infer, 
            outputs=[result]
        )

    run_button.click(
        fn=infer,
        inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs=[result]
    )

demo.queue().launch()