Spaces:
Runtime error
Runtime error
8 bit onxx (#5)
Browse files- 8 bit onxx (a35a0a82d6202fd081cef55fdf17fadf23a43395)
Co-authored-by: Aditi Baheti <[email protected]>
app.py
CHANGED
@@ -5,6 +5,10 @@ from diffusers import DiffusionPipeline
|
|
5 |
import torch
|
6 |
from huggingface_hub import login
|
7 |
import os
|
|
|
|
|
|
|
|
|
8 |
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
|
@@ -16,17 +20,32 @@ login(token=HUGGINGFACE_TOKEN)
|
|
16 |
base_model_repo = "stabilityai/stable-diffusion-3-medium-diffusers"
|
17 |
lora_weights_path = "./pytorch_lora_weights.safetensors"
|
18 |
|
19 |
-
# Load the base model
|
20 |
pipeline = DiffusionPipeline.from_pretrained(
|
21 |
base_model_repo,
|
22 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
23 |
use_auth_token=HUGGINGFACE_TOKEN
|
24 |
)
|
|
|
|
|
25 |
pipeline.load_lora_weights(lora_weights_path)
|
26 |
pipeline.enable_sequential_cpu_offload() # Efficient memory usage
|
27 |
pipeline.enable_xformers_memory_efficient_attention() # Enable xformers memory efficient attention
|
28 |
pipeline = pipeline.to(device)
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
MAX_SEED = np.iinfo(np.int32).max
|
31 |
MAX_IMAGE_SIZE = 768 # Reduce max image size to fit within memory constraints
|
32 |
|
|
|
5 |
import torch
|
6 |
from huggingface_hub import login
|
7 |
import os
|
8 |
+
import bitsandbytes as bnb
|
9 |
+
import onnx
|
10 |
+
import onnxruntime as ort
|
11 |
+
from onnxruntime.quantization import quantize_dynamic, QuantType
|
12 |
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
|
|
|
20 |
base_model_repo = "stabilityai/stable-diffusion-3-medium-diffusers"
|
21 |
lora_weights_path = "./pytorch_lora_weights.safetensors"
|
22 |
|
23 |
+
# Load the base model with 8-bit precision
|
24 |
pipeline = DiffusionPipeline.from_pretrained(
|
25 |
base_model_repo,
|
26 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
27 |
use_auth_token=HUGGINGFACE_TOKEN
|
28 |
)
|
29 |
+
bnb.optim.load_int8_model(pipeline.model, device=device)
|
30 |
+
|
31 |
pipeline.load_lora_weights(lora_weights_path)
|
32 |
pipeline.enable_sequential_cpu_offload() # Efficient memory usage
|
33 |
pipeline.enable_xformers_memory_efficient_attention() # Enable xformers memory efficient attention
|
34 |
pipeline = pipeline.to(device)
|
35 |
|
36 |
+
# Export to ONNX
|
37 |
+
onnx_model_path = "model.onnx"
|
38 |
+
pipeline.model.eval()
|
39 |
+
dummy_input = torch.randn(1, 3, 512, 512, device=device)
|
40 |
+
torch.onnx.export(pipeline.model, dummy_input, onnx_model_path, export_params=True, opset_version=11, do_constant_folding=True, input_names=['input'], output_names=['output'])
|
41 |
+
|
42 |
+
# Quantize ONNX model to 8-bit
|
43 |
+
quantized_model_path = "model_quantized.onnx"
|
44 |
+
quantize_dynamic(onnx_model_path, quantized_model_path, weight_type=QuantType.QUInt8)
|
45 |
+
|
46 |
+
# Load quantized ONNX model
|
47 |
+
session = ort.InferenceSession(quantized_model_path)
|
48 |
+
|
49 |
MAX_SEED = np.iinfo(np.int32).max
|
50 |
MAX_IMAGE_SIZE = 768 # Reduce max image size to fit within memory constraints
|
51 |
|