Spaces:
riteshrm
/
Runtime error

PASD / app.py
fffiloni's picture
Update app.py
021663d verified
raw
history blame
9.62 kB
import spaces
import os
import datetime
import einops
import gradio as gr
from gradio_imageslider import ImageSlider
import numpy as np
import torch
import random
from PIL import Image
from pathlib import Path
from torchvision import transforms
import torch.nn.functional as F
from torchvision.models import resnet50, ResNet50_Weights
from pytorch_lightning import seed_everything
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor
from diffusers import AutoencoderKL, DDIMScheduler, PNDMScheduler, DPMSolverMultistepScheduler, UniPCMultistepScheduler
from pipelines.pipeline_pasd import StableDiffusionControlNetPipeline
from myutils.misc import load_dreambooth_lora, rand_name
from myutils.wavelet_color_fix import wavelet_color_fix
from annotator.retinaface import RetinaFaceDetection
use_pasd_light = False
face_detector = RetinaFaceDetection()
if use_pasd_light:
from models.pasd_light.unet_2d_condition import UNet2DConditionModel
from models.pasd_light.controlnet import ControlNetModel
else:
from models.pasd.unet_2d_condition import UNet2DConditionModel
from models.pasd.controlnet import ControlNetModel
pretrained_model_path = "checkpoints/stable-diffusion-v1-5"
ckpt_path = "runs/pasd/checkpoint-100000"
#dreambooth_lora_path = "checkpoints/personalized_models/toonyou_beta3.safetensors"
dreambooth_lora_path = "checkpoints/personalized_models/majicmixRealistic_v6.safetensors"
#dreambooth_lora_path = "checkpoints/personalized_models/Realistic_Vision_V5.1.safetensors"
weight_dtype = torch.float16
device = "cuda"
scheduler = UniPCMultistepScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
feature_extractor = CLIPImageProcessor.from_pretrained(f"{pretrained_model_path}/feature_extractor")
unet = UNet2DConditionModel.from_pretrained(ckpt_path, subfolder="unet")
controlnet = ControlNetModel.from_pretrained(ckpt_path, subfolder="controlnet")
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
unet.requires_grad_(False)
controlnet.requires_grad_(False)
unet, vae, text_encoder = load_dreambooth_lora(unet, vae, text_encoder, dreambooth_lora_path)
text_encoder.to(device, dtype=weight_dtype)
vae.to(device, dtype=weight_dtype)
unet.to(device, dtype=weight_dtype)
controlnet.to(device, dtype=weight_dtype)
validation_pipeline = StableDiffusionControlNetPipeline(
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, feature_extractor=feature_extractor,
unet=unet, controlnet=controlnet, scheduler=scheduler, safety_checker=None, requires_safety_checker=False,
)
#validation_pipeline.enable_vae_tiling()
validation_pipeline._init_tiled_vae(decoder_tile_size=224)
weights = ResNet50_Weights.DEFAULT
preprocess = weights.transforms()
resnet = resnet50(weights=weights)
resnet.eval()
def resize_image(image_path, target_height):
# Open the image file
with Image.open(image_path) as img:
# Calculate the ratio to resize the image to the target height
ratio = target_height / float(img.size[1])
# Calculate the new width based on the aspect ratio
new_width = int(float(img.size[0]) * ratio)
# Resize the image
resized_img = img.resize((new_width, target_height), Image.LANCZOS)
# Save the resized image
#resized_img.save(output_path)
return resized_img
@spaces.GPU(enable_queue=True)
def inference(input_image, prompt, a_prompt, n_prompt, denoise_steps, upscale, alpha, cfg, seed):
#tempo fix for seed equals-1
if seed == -1:
seed = 0
input_image = resize_image(input_image, 512)
process_size = 768
resize_preproc = transforms.Compose([
transforms.Resize(process_size, interpolation=transforms.InterpolationMode.BILINEAR),
])
# Get the current timestamp
timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
with torch.no_grad():
seed_everything(seed)
generator = torch.Generator(device=device)
input_image = input_image.convert('RGB')
batch = preprocess(input_image).unsqueeze(0)
prediction = resnet(batch).squeeze(0).softmax(0)
class_id = prediction.argmax().item()
score = prediction[class_id].item()
category_name = weights.meta["categories"][class_id]
if score >= 0.1:
prompt += f"{category_name}" if prompt=='' else f", {category_name}"
prompt = a_prompt if prompt=='' else f"{prompt}, {a_prompt}"
ori_width, ori_height = input_image.size
resize_flag = False
rscale = upscale
input_image = input_image.resize((input_image.size[0]*rscale, input_image.size[1]*rscale))
#if min(validation_image.size) < process_size:
# validation_image = resize_preproc(validation_image)
input_image = input_image.resize((input_image.size[0]//8*8, input_image.size[1]//8*8))
width, height = input_image.size
resize_flag = True #
try:
image = validation_pipeline(
None, prompt, input_image, num_inference_steps=denoise_steps, generator=generator, height=height, width=width, guidance_scale=cfg,
negative_prompt=n_prompt, conditioning_scale=alpha, eta=0.0,
).images[0]
if True: #alpha<1.0:
image = wavelet_color_fix(image, input_image)
if resize_flag:
image = image.resize((ori_width*rscale, ori_height*rscale))
except Exception as e:
print(e)
image = Image.new(mode="RGB", size=(512, 512))
# Convert and save the image as JPEG
image.save(f'result_{timestamp}.jpg', 'JPEG')
# Convert and save the image as JPEG
input_image.save(f'input_{timestamp}.jpg', 'JPEG')
return (f"input_{timestamp}.jpg", f"result_{timestamp}.jpg"), f"result_{timestamp}.jpg"
title = "Pixel-Aware Stable Diffusion for Real-ISR"
description = "Gradio Demo for PASD Real-ISR. To use it, simply upload your image, or click one of the examples to load them."
article = "<a href='https://github.com/yangxy/PASD' target='_blank'>Github Repo Pytorch</a>"
#examples=[['samples/27d38eeb2dbbe7c9.png'],['samples/629e4da70703193b.png']]
css = """
#col-container{
margin: 0 auto;
max-width: 720px;
}
#project-links{
margin: 0 0 12px !important;
column-gap: 8px;
display: flex;
justify-content: center;
flex-wrap: nowrap;
flex-direction: row;
align-items: center;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML(f"""
<h2 style="text-align: center;">
PASD Magnify
</h2>
<p style="text-align: center;">
Pixel-Aware Stable Diffusion for Realistic Image Super-resolution and Personalized Stylization
</p>
<p id="project-links" align="center">
<a href='https://github.com/yangxy/PASD'><img src='https://img.shields.io/badge/Project-Page-Green'></a> <a href='https://huggingface.co/papers/2308.14469'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a>
</p>
<p style="margin:12px auto;display: flex;justify-content: center;">
<a href="https://huggingface.co/spaces/fffiloni/PASD?duplicate=true"><img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg.svg" alt="Duplicate this Space"></a>
</p>
""")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="filepath", sources=["upload"], value="samples/frog.png")
prompt_in = gr.Textbox(label="Prompt", value="Frog")
with gr.Accordion(label="Advanced settings", open=False):
added_prompt = gr.Textbox(label="Added Prompt", value='clean, high-resolution, 8k, best quality, masterpiece')
neg_prompt = gr.Textbox(label="Negative Prompt",value='dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
denoise_steps = gr.Slider(label="Denoise Steps", minimum=10, maximum=50, value=20, step=1)
upsample_scale = gr.Slider(label="Upsample Scale", minimum=1, maximum=4, value=2, step=1)
condition_scale = gr.Slider(label="Conditioning Scale", minimum=0.5, maximum=1.5, value=1.1, step=0.1)
classifier_free_guidance = gr.Slider(label="Classier-free Guidance", minimum=0.1, maximum=10.0, value=7.5, step=0.1)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
submit_btn = gr.Button("Submit")
with gr.Column():
b_a_slider = ImageSlider(label="B/A result", position=0.5)
file_output = gr.File(label="Downloadable image result")
submit_btn.click(
fn = inference,
inputs = [
input_image, prompt_in,
added_prompt, neg_prompt,
denoise_steps,
upsample_scale, condition_scale,
classifier_free_guidance, seed
],
outputs = [
b_a_slider,
file_output
]
)
demo.queue(max_size=20).launch()