File size: 5,498 Bytes
dc149ba 3ad5346 dc149ba 8c5885d 158e38e 8c5885d dc149ba 33e3967 dc149ba 8c5885d 46abd0a 8c5885d 46abd0a 8c5885d 5e8469e 8c5885d 98b9978 31097f0 3ad5346 5e8469e 98b9978 5e8469e 98b9978 8c5885d 98b9978 dc149ba 592978b dc149ba 2866119 dc149ba 2866119 dc149ba 2866119 dc149ba de3cada b52f918 8112e48 f010b24 31097f0 592978b 3ad5346 592978b 9215493 dc149ba cc4bac3 a71436a 33e3967 a71436a de3cada 33e3967 de3cada 8c5885d 90e8b1d de3cada 90e8b1d 65fbb2d de3cada 8c5885d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
"""
translation program for simple text
1. detect language from langdetect
2. translate to target language given by user
Example from
https://www.thepythoncode.com/article/machine-translation-using-huggingface-transformers-in-python
user_input:
string: string to be translated
target_lang: language to be translated to
Returns:
string: translated string of text
try this : https://pypi.org/project/EasyNMT/
and this : https://huggingface.co/IDEA-CCNL/Randeng-Deltalm-362M-En-Zh
"""
from __future__ import annotations
from typing import Iterable
import gradio as gr
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes
import argparse
import langid
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
class myTheme(Base):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.red,
secondary_hue: colors.Color | str = colors.blue,
neutral_hue: colors.Color | str = colors.orange,
spacing_size: sizes.Size | str = sizes.spacing_md,
radius_size: sizes.Size | str = sizes.radius_md,
text_size: sizes.Size | str = sizes.text_lg,
font: fonts.Font
| str
| Iterable[fonts.Font | str] = (
fonts.GoogleFont("handjet"),
"cursive",
# "sans-serif",
),
font_mono: fonts.Font
| str
| Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"),
"ui-monospace",
"monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
spacing_size=spacing_size,
radius_size=radius_size,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
body_background_fill="repeating-linear-gradient(135deg, *primary_800, *primary_800 10px, *primary_900 10px, *primary_900 20px)",
button_primary_background_fill="linear-gradient(90deg, *primary_600, *secondary_800)",
button_primary_background_fill_hover="linear-gradient(45deg, *primary_200, *secondary_300)",
button_primary_text_color="white",
slider_color="*secondary_300",
slider_color_dark="*secondary_600",
block_title_text_weight="600",
block_border_width="3px",
block_shadow="*shadow_drop_lg",
button_shadow="*shadow_drop_lg",
button_large_padding="24px",
)
def detect_lang(article):
"""
Language Detection using library langid
Args:
article (string): article that user wish to translate
target_lang (string): language user want to translate article into
Returns:
string: detected language short form
"""
result_lang = langid.classify(article)
return result_lang[0]
def opus_trans(article, target_language):
"""
Translation by Helsinki-NLP model
Args:
article (string): article that user wishes to translate
result_lang (string): detected language in short form
target_language (string): language that user wishes to translate article into
Returns:
string: translated piece of article based off target_language
"""
result_lang = detect_lang(article)
if target_language == "English":
target_lang = "en"
elif target_language == "Chinese":
target_lang = "zh"
if result_lang != target_lang:
task_name = f"translation_{result_lang}_to_{target_lang}"
model_name = f"Helsinki-NLP/opus-mt-{result_lang}-{target_lang}"
try:
translator = pipeline(task_name, model=model_name, tokenizer=model_name)
translated = translator(article)[0]["translation_text"]
except:
translated = "Error: Model doesn't exist"
else:
translated = "Error: You chose the same language as the article detected language. Please reselect language and try again."
return translated
def nllb_trans(article, target_language):
tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
inputs = tokenizer(article, return_tensors="pt")
if target_language == "English":
target_lang = "Eng_Latn"
elif target_language == "Chinese":
target_lang = "zho_Hans"
translated_tokens = model.generate(
**inputs,
forced_bos_token_id=tokenizer.lang_code_to_id[target_lang],
max_length=30,
)
return tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
def translate(article, toolkit, target_language):
if toolkit == "OPUS":
translated = opus_trans(article, target_language)
elif toolkit == "NLLB":
translated = nllb_trans(article, target_language)
return translated
myTheme = myTheme()
with gr.Blocks(theme=myTheme) as demo:
article = gr.Textbox(label="Article")
toolkit_select = gr.Radio(["OPUS", "NLLB"], label="Select Translation Model")
lang_select = gr.Radio(["English", "Chinese"], label="Select Desired Language")
result = gr.Textbox(label="Translated Result")
trans_btn = gr.Button("Translate")
trans_btn.click(
fn=translate, inputs=[article, toolkit_select, lang_select], outputs=result
)
demo.launch()
|