Spaces:
Runtime error
Runtime error
from diffusers import DiffusionPipeline, LCMScheduler, AutoencoderTiny | |
import torch | |
import os | |
import datetime | |
import time | |
from PIL import Image | |
import re | |
import base64 | |
from io import BytesIO | |
import pytz | |
try: | |
import intel_extension_for_pytorch as ipex | |
except: | |
pass | |
from PIL import Image | |
import numpy as np | |
import gradio as gr | |
import psutil | |
import time | |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None) | |
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None) | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
# check if MPS is available OSX only M1/M2/M3 chips | |
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available() | |
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available() | |
device = torch.device( | |
"cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu" | |
) | |
torch_device = device | |
torch_dtype = torch.float16 | |
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}") | |
print(f"TORCH_COMPILE: {TORCH_COMPILE}") | |
print(f"device: {device}") | |
if mps_available: | |
device = torch.device("mps") | |
torch_device = "cpu" | |
torch_dtype = torch.float32 | |
if SAFETY_CHECKER == "True": | |
pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7") | |
else: | |
pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7", safety_checker=None) | |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
pipe.to(device=torch_device, dtype=torch_dtype).to(device) | |
pipe.unet.to(memory_format=torch.channels_last) | |
pipe.set_progress_bar_config(disable=True) | |
# check if computer has less than 64GB of RAM using sys or os | |
if psutil.virtual_memory().total < 64 * 1024**3: | |
pipe.enable_attention_slicing() | |
if TORCH_COMPILE: | |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | |
pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True) | |
pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0) | |
# Load LCM LoRA | |
pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5") | |
pipe.fuse_lora() | |
def safe_filename(text): | |
"""Generate a safe filename from a string.""" | |
safe_text = re.sub(r'\W+', '_', text) | |
timestamp = datetime.datetime.now().strftime("%Y%m%d") | |
return f"{safe_text}_{timestamp}.png" | |
def encode_image(image): | |
"""Encode image to base64.""" | |
buffered = BytesIO() | |
#image.save(buffered, format="PNG") | |
return base64.b64encode(buffered.getvalue()).decode() | |
def predict(prompt, guidance, steps, seed=1231231): | |
generator = torch.manual_seed(seed) | |
last_time = time.time() | |
results = pipe( | |
prompt=prompt, | |
generator=generator, | |
num_inference_steps=steps, | |
guidance_scale=guidance, | |
width=512, | |
height=512, | |
# original_inference_steps=params.lcm_steps, | |
output_type="pil", | |
) | |
print(f"Pipe took {time.time() - last_time} seconds") | |
nsfw_content_detected = ( | |
results.nsfw_content_detected[0] | |
if "nsfw_content_detected" in results | |
else False | |
) | |
if nsfw_content_detected: | |
nsfw=gr.Button("🕹️NSFW🎨", scale=1) | |
# Generate file name | |
#date_str = datetime.datetime.now().strftime("%Y%m%d") | |
#safe_prompt = prompt.replace(" ", "_")[:50] # Truncate long prompts | |
#filename = f"{date_str}_{safe_prompt}.png" | |
central = pytz.timezone('US/Central') | |
safe_date_time = datetime.datetime.now().strftime("%Y%m%d") | |
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_") | |
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90] | |
filename = f"{safe_date_time}_{safe_prompt}.png" | |
# Save the image | |
if len(results.images) > 0: | |
image_path = os.path.join("", filename) # Specify your directory | |
results.images[0].save(image_path) | |
print(f"#Image saved as {image_path}") | |
#filename = safe_filename(prompt) | |
#image.save(filename) | |
encoded_image = encode_image(image) | |
html_link = f'<a href="data:image/png;base64,{encoded_image}" download="{filename}">Download Image</a>' | |
return results.images[0] if len(results.images) > 0 else None | |
css = """ | |
#container{ | |
margin: 0 auto; | |
max-width: 40rem; | |
} | |
#intro{ | |
max-width: 100%; | |
text-align: center; | |
margin: 0 auto; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="container"): | |
gr.Markdown( | |
"""## 🕹️ Stable Diffusion 1.5 - Real Time 🎨 Image Generation Using 🌐 Latent Consistency LoRAs""", | |
elem_id="intro", | |
) | |
with gr.Row(): | |
with gr.Row(): | |
prompt = gr.Textbox( | |
placeholder="Insert your prompt here:", scale=5, container=False | |
) | |
generate_bt = gr.Button("Generate", scale=1) | |
image = gr.Image(type="filepath") | |
with gr.Accordion("Advanced options", open=False): | |
guidance = gr.Slider( | |
label="Guidance", minimum=0.0, maximum=5, value=0.3, step=0.001 | |
) | |
steps = gr.Slider(label="Steps", value=4, minimum=2, maximum=10, step=1) | |
seed = gr.Slider( | |
randomize=True, minimum=0, maximum=12013012031030, label="Seed", step=1 | |
) | |
with gr.Accordion("Run with diffusers"): | |
gr.Markdown( | |
"""## Running LCM-LoRAs it with `diffusers` | |
```bash | |
pip install diffusers==0.23.0 | |
``` | |
```py | |
from diffusers import DiffusionPipeline, LCMScheduler | |
pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7").to("cuda") | |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5") #yes, it's a normal LoRA | |
results = pipe( | |
prompt="ImageEditor", | |
num_inference_steps=4, | |
guidance_scale=0.0, | |
) | |
results.images[0] | |
``` | |
""" | |
) | |
inputs = [prompt, guidance, steps, seed] | |
generate_bt.click(fn=predict, inputs=inputs, outputs=image, show_progress=False) | |
prompt.input(fn=predict, inputs=inputs, outputs=image, show_progress=False) | |
guidance.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) | |
steps.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) | |
seed.change(fn=predict, inputs=inputs, outputs=image, show_progress=False) | |
demo.queue() | |
demo.launch() | |