awacke1's picture
Update app.py
e6d5b6f
raw
history blame
6.53 kB
from diffusers import DiffusionPipeline, LCMScheduler, AutoencoderTiny
import torch
import os
import datetime
import time
from PIL import Image
import re
import base64
from io import BytesIO
import pytz
try:
import intel_extension_for_pytorch as ipex
except:
pass
from PIL import Image
import numpy as np
import gradio as gr
import psutil
import time
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# check if MPS is available OSX only M1/M2/M3 chips
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
device = torch.device(
"cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu"
)
torch_device = device
torch_dtype = torch.float16
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
print(f"TORCH_COMPILE: {TORCH_COMPILE}")
print(f"device: {device}")
if mps_available:
device = torch.device("mps")
torch_device = "cpu"
torch_dtype = torch.float32
if SAFETY_CHECKER == "True":
pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7")
else:
pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7", safety_checker=None)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.to(device=torch_device, dtype=torch_dtype).to(device)
pipe.unet.to(memory_format=torch.channels_last)
pipe.set_progress_bar_config(disable=True)
# check if computer has less than 64GB of RAM using sys or os
if psutil.virtual_memory().total < 64 * 1024**3:
pipe.enable_attention_slicing()
if TORCH_COMPILE:
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
# Load LCM LoRA
pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5")
pipe.fuse_lora()
def safe_filename(text):
"""Generate a safe filename from a string."""
safe_text = re.sub(r'\W+', '_', text)
timestamp = datetime.datetime.now().strftime("%Y%m%d")
return f"{safe_text}_{timestamp}.png"
def encode_image(image):
"""Encode image to base64."""
buffered = BytesIO()
#image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode()
def predict(prompt, guidance, steps, seed=1231231):
generator = torch.manual_seed(seed)
last_time = time.time()
results = pipe(
prompt=prompt,
generator=generator,
num_inference_steps=steps,
guidance_scale=guidance,
width=512,
height=512,
# original_inference_steps=params.lcm_steps,
output_type="pil",
)
print(f"Pipe took {time.time() - last_time} seconds")
nsfw_content_detected = (
results.nsfw_content_detected[0]
if "nsfw_content_detected" in results
else False
)
if nsfw_content_detected:
nsfw=gr.Button("🕹️NSFW🎨", scale=1)
# Generate file name
#date_str = datetime.datetime.now().strftime("%Y%m%d")
#safe_prompt = prompt.replace(" ", "_")[:50] # Truncate long prompts
#filename = f"{date_str}_{safe_prompt}.png"
central = pytz.timezone('US/Central')
safe_date_time = datetime.datetime.now().strftime("%Y%m%d")
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
filename = f"{safe_date_time}_{safe_prompt}.png"
# Save the image
if len(results.images) > 0:
image_path = os.path.join("", filename) # Specify your directory
results.images[0].save(image_path)
print(f"#Image saved as {image_path}")
#filename = safe_filename(prompt)
#image.save(filename)
encoded_image = encode_image(image)
html_link = f'<a href="data:image/png;base64,{encoded_image}" download="{filename}">Download Image</a>'
return results.images[0] if len(results.images) > 0 else None
css = """
#container{
margin: 0 auto;
max-width: 40rem;
}
#intro{
max-width: 100%;
text-align: center;
margin: 0 auto;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="container"):
gr.Markdown(
"""## 🕹️ Stable Diffusion 1.5 - Real Time 🎨 Image Generation Using 🌐 Latent Consistency LoRAs""",
elem_id="intro",
)
with gr.Row():
with gr.Row():
prompt = gr.Textbox(
placeholder="Insert your prompt here:", scale=5, container=False
)
generate_bt = gr.Button("Generate", scale=1)
image = gr.Image(type="filepath")
with gr.Accordion("Advanced options", open=False):
guidance = gr.Slider(
label="Guidance", minimum=0.0, maximum=5, value=0.3, step=0.001
)
steps = gr.Slider(label="Steps", value=4, minimum=2, maximum=10, step=1)
seed = gr.Slider(
randomize=True, minimum=0, maximum=12013012031030, label="Seed", step=1
)
with gr.Accordion("Run with diffusers"):
gr.Markdown(
"""## Running LCM-LoRAs it with `diffusers`
```bash
pip install diffusers==0.23.0
```
```py
from diffusers import DiffusionPipeline, LCMScheduler
pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7").to("cuda")
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5") #yes, it's a normal LoRA
results = pipe(
prompt="ImageEditor",
num_inference_steps=4,
guidance_scale=0.0,
)
results.images[0]
```
"""
)
inputs = [prompt, guidance, steps, seed]
generate_bt.click(fn=predict, inputs=inputs, outputs=image, show_progress=False)
prompt.input(fn=predict, inputs=inputs, outputs=image, show_progress=False)
guidance.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
steps.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
seed.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
demo.queue()
demo.launch()