Spaces:
Sleeping
Sleeping
import math | |
import torch | |
from torch.optim import Optimizer | |
class RAdamW(Optimizer): | |
r"""Implements RAdamW algorithm. | |
RAdam from `On the Variance of the Adaptive Learning Rate and Beyond | |
<https://arxiv.org/abs/1908.03265v1>`_ | |
* `Adam: A Method for Stochastic Optimization | |
<https://arxiv.org/abs/1412.6980>`_ | |
* `Decoupled Weight Decay Regularization | |
<https://arxiv.org/abs/1711.05101>`_ | |
* `On the Convergence of Adam and Beyond | |
<https://openreview.net/forum?id=ryQu7f-RZ>`_ | |
* `On the Variance of the Adaptive Learning Rate and Beyond | |
<https://arxiv.org/abs/1908.03265v1>`_ | |
Arguments: | |
params (iterable): iterable of parameters to optimize or dicts defining | |
parameter groups | |
lr (float, optional): learning rate (default: 1e-3) | |
betas (Tuple[float, float], optional): coefficients used for computing | |
running averages of gradient and its square (default: (0.9, 0.999)) | |
eps (float, optional): term added to the denominator to improve | |
numerical stability (default: 1e-8) | |
weight_decay (float, optional): weight decay coefficient (default: 1e-2) | |
""" | |
def __init__( | |
self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2 | |
): | |
if not 0.0 <= lr: | |
raise ValueError("Invalid learning rate: {}".format(lr)) | |
if not 0.0 <= eps: | |
raise ValueError("Invalid epsilon value: {}".format(eps)) | |
if not 0.0 <= betas[0] < 1.0: | |
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) | |
if not 0.0 <= betas[1] < 1.0: | |
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) | |
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) | |
super(RAdamW, self).__init__(params, defaults) | |
def step(self, closure=None): | |
"""Performs a single optimization step. | |
Arguments: | |
closure (callable, optional): A closure that reevaluates the model | |
and returns the loss. | |
""" | |
loss = None | |
if closure is not None: | |
loss = closure() | |
for group in self.param_groups: | |
for p in group["params"]: | |
if p.grad is None: | |
continue | |
# Perform optimization step | |
grad = p.grad.data | |
if grad.is_sparse: | |
raise RuntimeError( | |
"Adam does not support sparse gradients, please consider SparseAdam instead" | |
) | |
state = self.state[p] | |
# State initialization | |
if len(state) == 0: | |
state["step"] = 0 | |
# Exponential moving average of gradient values | |
state["exp_avg"] = torch.zeros_like(p.data) | |
# Exponential moving average of squared gradient values | |
state["exp_avg_sq"] = torch.zeros_like(p.data) | |
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] | |
beta1, beta2 = group["betas"] | |
eps = group["eps"] | |
lr = group["lr"] | |
if "rho_inf" not in group: | |
group["rho_inf"] = 2 / (1 - beta2) - 1 | |
rho_inf = group["rho_inf"] | |
state["step"] += 1 | |
t = state["step"] | |
# Decay the first and second moment running average coefficient | |
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) | |
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) | |
rho_t = rho_inf - ((2 * t * (beta2**t)) / (1 - beta2**t)) | |
# Perform stepweight decay | |
p.data.mul_(1 - lr * group["weight_decay"]) | |
if rho_t >= 5: | |
var = exp_avg_sq.sqrt().add_(eps) | |
r = math.sqrt( | |
(1 - beta2**t) | |
* ((rho_t - 4) * (rho_t - 2) * rho_inf) | |
/ ((rho_inf - 4) * (rho_inf - 2) * rho_t) | |
) | |
p.data.addcdiv_(exp_avg, var, value=-lr * r / (1 - beta1**t)) | |
else: | |
p.data.add_(exp_avg, alpha=-lr / (1 - beta1**t)) | |
return loss | |
# from typing import List | |
# import collections | |
# import torch | |
# import transformers | |
# from classy.optim.factories import Factory | |
# from transformers import AdamW | |
# class ElectraOptimizer(Factory): | |
# def __init__( | |
# self, | |
# lr: float, | |
# warmup_steps: int, | |
# total_steps: int, | |
# weight_decay: float, | |
# lr_decay: float, | |
# no_decay_params: List[str], | |
# ): | |
# self.lr = lr | |
# self.warmup_steps = warmup_steps | |
# self.total_steps = total_steps | |
# self.weight_decay = weight_decay | |
# self.lr_decay = lr_decay | |
# self.no_decay_params = no_decay_params | |
# def group_layers(self, module) -> dict: | |
# grouped_layers = collections.defaultdict(list) | |
# module_named_parameters = list(module.named_parameters()) | |
# for ln, lp in module_named_parameters: | |
# if "embeddings" in ln: | |
# grouped_layers["embeddings"].append((ln, lp)) | |
# elif "encoder.layer" in ln: | |
# layer_num = ln.replace("transformer_model.encoder.layer.", "") | |
# layer_num = layer_num[0 : layer_num.index(".")] | |
# grouped_layers[layer_num].append((ln, lp)) | |
# else: | |
# grouped_layers["head"].append((ln, lp)) | |
# depth = len(grouped_layers) - 1 | |
# final_dict = dict() | |
# for key, value in grouped_layers.items(): | |
# if key == "head": | |
# final_dict[0] = value | |
# elif key == "embeddings": | |
# final_dict[depth] = value | |
# else: | |
# # -1 because layer number starts from zero | |
# final_dict[depth - int(key) - 1] = value | |
# assert len(module_named_parameters) == sum( | |
# len(v) for _, v in final_dict.items() | |
# ) | |
# return final_dict | |
# def group_params(self, module) -> list: | |
# optimizer_grouped_params = [] | |
# for inverse_depth, layer in self.group_layers(module).items(): | |
# layer_lr = self.lr * (self.lr_decay**inverse_depth) | |
# layer_wd_params = { | |
# "params": [ | |
# lp | |
# for ln, lp in layer | |
# if not any(nd in ln for nd in self.no_decay_params) | |
# ], | |
# "weight_decay": self.weight_decay, | |
# "lr": layer_lr, | |
# } | |
# layer_no_wd_params = { | |
# "params": [ | |
# lp | |
# for ln, lp in layer | |
# if any(nd in ln for nd in self.no_decay_params) | |
# ], | |
# "weight_decay": 0, | |
# "lr": layer_lr, | |
# } | |
# if len(layer_wd_params) != 0: | |
# optimizer_grouped_params.append(layer_wd_params) | |
# if len(layer_no_wd_params) != 0: | |
# optimizer_grouped_params.append(layer_no_wd_params) | |
# return optimizer_grouped_params | |
# def __call__(self, module: torch.nn.Module): | |
# optimizer_grouped_parameters = self.group_params(module) | |
# optimizer = AdamW(optimizer_grouped_parameters, lr=self.lr) | |
# scheduler = transformers.get_linear_schedule_with_warmup( | |
# optimizer, self.warmup_steps, self.total_steps | |
# ) | |
# return { | |
# "optimizer": optimizer, | |
# "lr_scheduler": { | |
# "scheduler": scheduler, | |
# "interval": "step", | |
# "frequency": 1, | |
# }, | |
# } | |