relik-entity-linking / relik /reader /relik_reader_re_data.py
riccorl's picture
first commit
626eca0
raw
history blame
34.4 kB
import logging
from typing import (
Any,
Callable,
Dict,
Generator,
Iterator,
List,
NamedTuple,
Optional,
Tuple,
Union,
)
import numpy as np
import torch
from reader.data.relik_reader_data_utils import (
add_noise_to_value,
batchify,
batchify_matrices,
batchify_tensor,
chunks,
flatten,
)
from reader.data.relik_reader_sample import RelikReaderSample, load_relik_reader_samples
from torch.utils.data import IterableDataset
from transformers import AutoTokenizer
from relik.reader.utils.special_symbols import NME_SYMBOL
logger = logging.getLogger(__name__)
class TokenizationOutput(NamedTuple):
input_ids: torch.Tensor
attention_mask: torch.Tensor
token_type_ids: torch.Tensor
prediction_mask: torch.Tensor
special_symbols_mask: torch.Tensor
special_symbols_mask_entities: torch.Tensor
class RelikREDataset(IterableDataset):
def __init__(
self,
dataset_path: str,
materialize_samples: bool,
transformer_model: str,
special_symbols: List[str],
shuffle_candidates: Optional[Union[bool, float]],
flip_candidates: Optional[Union[bool, float]],
relations_definitions: Union[str, Dict[str, str]],
for_inference: bool,
entities_definitions: Optional[Union[str, Dict[str, str]]] = None,
special_symbols_entities: Optional[List[str]] = None,
noise_param: float = 0.1,
sorting_fields: Optional[str] = None,
tokens_per_batch: int = 2048,
batch_size: int = None,
max_batch_size: int = 128,
section_size: int = 50_000,
prebatch: bool = True,
max_candidates: int = 0,
add_gold_candidates: bool = True,
use_nme: bool = True,
min_length: int = 5,
max_length: int = 2048,
model_max_length: int = 1000,
skip_empty_training_samples: bool = True,
drop_last: bool = False,
samples: Optional[Iterator[RelikReaderSample]] = None,
**kwargs,
):
super().__init__(**kwargs)
self.dataset_path = dataset_path
self.materialize_samples = materialize_samples
self.samples: Optional[List[RelikReaderSample]] = None
if self.materialize_samples:
self.samples = list()
self.tokenizer = self._build_tokenizer(transformer_model, special_symbols)
self.special_symbols = special_symbols
self.special_symbols_entities = special_symbols_entities
self.shuffle_candidates = shuffle_candidates
self.flip_candidates = flip_candidates
self.for_inference = for_inference
self.noise_param = noise_param
self.batching_fields = ["input_ids"]
self.sorting_fields = (
sorting_fields if sorting_fields is not None else self.batching_fields
)
# open relations definitions file if needed
if type(relations_definitions) == str:
relations_definitions = {
line.split("\t")[0]: line.split("\t")[1]
for line in open(relations_definitions)
}
self.max_candidates = max_candidates
self.relations_definitions = relations_definitions
self.entities_definitions = entities_definitions
self.add_gold_candidates = add_gold_candidates
self.use_nme = use_nme
self.min_length = min_length
self.max_length = max_length
self.model_max_length = (
model_max_length
if model_max_length < self.tokenizer.model_max_length
else self.tokenizer.model_max_length
)
self.transformer_model = transformer_model
self.skip_empty_training_samples = skip_empty_training_samples
self.drop_last = drop_last
self.samples = samples
self.tokens_per_batch = tokens_per_batch
self.batch_size = batch_size
self.max_batch_size = max_batch_size
self.section_size = section_size
self.prebatch = prebatch
def _build_tokenizer(self, transformer_model: str, special_symbols: List[str]):
return AutoTokenizer.from_pretrained(
transformer_model,
additional_special_tokens=[ss for ss in special_symbols],
add_prefix_space=True,
)
@property
def fields_batcher(self) -> Dict[str, Union[None, Callable[[list], Any]]]:
fields_batchers = {
"input_ids": lambda x: batchify(
x, padding_value=self.tokenizer.pad_token_id
),
"attention_mask": lambda x: batchify(x, padding_value=0),
"token_type_ids": lambda x: batchify(x, padding_value=0),
"prediction_mask": lambda x: batchify(x, padding_value=1),
"global_attention": lambda x: batchify(x, padding_value=0),
"token2word": None,
"sample": None,
"special_symbols_mask": lambda x: batchify(x, padding_value=False),
"special_symbols_mask_entities": lambda x: batchify(x, padding_value=False),
"start_labels": lambda x: batchify(x, padding_value=-100),
"end_labels": lambda x: batchify_matrices(x, padding_value=-100),
"disambiguation_labels": lambda x: batchify(x, padding_value=-100),
"relation_labels": lambda x: batchify_tensor(x, padding_value=-100),
"predictable_candidates": None,
}
if "roberta" in self.transformer_model:
del fields_batchers["token_type_ids"]
return fields_batchers
def _build_input_ids(
self, sentence_input_ids: List[int], candidates_input_ids: List[List[int]]
) -> List[int]:
return (
[self.tokenizer.cls_token_id]
+ sentence_input_ids
+ [self.tokenizer.sep_token_id]
+ flatten(candidates_input_ids)
+ [self.tokenizer.sep_token_id]
)
def _get_special_symbols_mask(self, input_ids: torch.Tensor) -> torch.Tensor:
special_symbols_mask = input_ids >= (
len(self.tokenizer)
- len(self.special_symbols + self.special_symbols_entities)
)
special_symbols_mask[0] = True
return special_symbols_mask
def _build_tokenizer_essentials(
self, input_ids, original_sequence
) -> TokenizationOutput:
input_ids = torch.tensor(input_ids, dtype=torch.long)
attention_mask = torch.ones_like(input_ids)
total_sequence_len = len(input_ids)
predictable_sentence_len = len(original_sequence)
# token type ids
token_type_ids = torch.cat(
[
input_ids.new_zeros(
predictable_sentence_len + 2
), # original sentence bpes + CLS and SEP
input_ids.new_ones(total_sequence_len - predictable_sentence_len - 2),
]
)
# prediction mask -> boolean on tokens that are predictable
prediction_mask = torch.tensor(
[1]
+ ([0] * predictable_sentence_len)
+ ([1] * (total_sequence_len - predictable_sentence_len - 1))
)
assert len(prediction_mask) == len(input_ids)
# special symbols mask
special_symbols_mask = input_ids >= (
len(self.tokenizer)
- len(self.special_symbols) # + self.special_symbols_entities)
)
if self.entities_definitions is not None:
# select only the first N true values where N is len(entities_definitions)
special_symbols_mask_entities = special_symbols_mask.clone()
special_symbols_mask_entities[
special_symbols_mask_entities.cumsum(0) > len(self.entities_definitions)
] = False
special_symbols_mask = special_symbols_mask ^ special_symbols_mask_entities
else:
special_symbols_mask_entities = special_symbols_mask.clone()
return TokenizationOutput(
input_ids,
attention_mask,
token_type_ids,
prediction_mask,
special_symbols_mask,
special_symbols_mask_entities,
)
def _build_labels(
self,
sample,
tokenization_output: TokenizationOutput,
) -> Tuple[torch.Tensor, torch.Tensor]:
start_labels = [0] * len(tokenization_output.input_ids)
end_labels = []
sample.entities.sort(key=lambda x: (x[0], x[1]))
prev_start_bpe = -1
num_repeat_start = 0
if self.entities_definitions:
sample.entities = [(ce[0], ce[1], ce[2]) for ce in sample.entities]
sample.entity_candidates = list(self.entities_definitions.keys())
disambiguation_labels = torch.zeros(
len(sample.entities),
len(sample.entity_candidates) + len(sample.candidates),
)
else:
sample.entities = [(ce[0], ce[1], "") for ce in sample.entities]
disambiguation_labels = torch.zeros(
len(sample.entities), len(sample.candidates)
)
ignored_labels_indices = tokenization_output.prediction_mask == 1
for idx, c_ent in enumerate(sample.entities):
start_bpe = sample.word2token[c_ent[0]][0] + 1
end_bpe = sample.word2token[c_ent[1] - 1][-1] + 1
class_index = idx
start_labels[start_bpe] = class_index + 1 # +1 for the NONE class
if start_bpe != prev_start_bpe:
end_labels.append([0] * len(tokenization_output.input_ids))
# end_labels[-1][:start_bpe] = [-100] * start_bpe
end_labels[-1][end_bpe] = class_index + 1
else:
end_labels[-1][end_bpe] = class_index + 1
num_repeat_start += 1
if self.entities_definitions:
entity_type_idx = sample.entity_candidates.index(c_ent[2])
disambiguation_labels[idx, entity_type_idx] = 1
prev_start_bpe = start_bpe
start_labels = torch.tensor(start_labels, dtype=torch.long)
start_labels[ignored_labels_indices] = -100
end_labels = torch.tensor(end_labels, dtype=torch.long)
end_labels[ignored_labels_indices.repeat(len(end_labels), 1)] = -100
relation_labels = torch.zeros(
len(sample.entities), len(sample.entities), len(sample.candidates)
)
# sample.relations = []
for re in sample.triplets:
if re["relation"]["name"] not in sample.candidates:
re_class_index = len(sample.candidates) - 1
else:
re_class_index = sample.candidates.index(
re["relation"]["name"]
) # should remove this +1
if self.entities_definitions:
subject_class_index = sample.entities.index(
(
re["subject"]["start"],
re["subject"]["end"],
re["subject"]["type"],
)
)
object_class_index = sample.entities.index(
(re["object"]["start"], re["object"]["end"], re["object"]["type"])
)
else:
subject_class_index = sample.entities.index(
(re["subject"]["start"], re["subject"]["end"], "")
)
object_class_index = sample.entities.index(
(re["object"]["start"], re["object"]["end"], "")
)
relation_labels[subject_class_index, object_class_index, re_class_index] = 1
if self.entities_definitions:
disambiguation_labels[
subject_class_index, re_class_index + len(sample.entity_candidates)
] = 1
disambiguation_labels[
object_class_index, re_class_index + len(sample.entity_candidates)
] = 1
# sample.relations.append([re['subject']['start'], re['subject']['end'], re['subject']['type'], re['relation']['name'], re['object']['start'], re['object']['end'], re['object']['type']])
else:
disambiguation_labels[subject_class_index, re_class_index] = 1
disambiguation_labels[object_class_index, re_class_index] = 1
# sample.relations.append([re['subject']['start'], re['subject']['end'], "", re['relation']['name'], re['object']['start'], re['object']['end'], ""])
return start_labels, end_labels, disambiguation_labels, relation_labels
def __iter__(self):
dataset_iterator = self.dataset_iterator_func()
current_dataset_elements = []
i = None
for i, dataset_elem in enumerate(dataset_iterator, start=1):
if (
self.section_size is not None
and len(current_dataset_elements) == self.section_size
):
for batch in self.materialize_batches(current_dataset_elements):
yield batch
current_dataset_elements = []
current_dataset_elements.append(dataset_elem)
if i % 50_000 == 0:
logger.info(f"Processed: {i} number of elements")
if len(current_dataset_elements) != 0:
for batch in self.materialize_batches(current_dataset_elements):
yield batch
if i is not None:
logger.info(f"Dataset finished: {i} number of elements processed")
else:
logger.warning("Dataset empty")
def dataset_iterator_func(self):
data_samples = (
load_relik_reader_samples(self.dataset_path)
if self.samples is None
else self.samples
)
for sample in data_samples:
# input sentence tokenization
input_tokenized = self.tokenizer(
sample.tokens,
return_offsets_mapping=True,
add_special_tokens=False,
is_split_into_words=True,
)
input_subwords = input_tokenized["input_ids"]
offsets = input_tokenized["offset_mapping"]
token2word = []
word2token = {}
count = 0
for i, offset in enumerate(offsets):
if offset[0] == 0:
token2word.append(i - count)
word2token[i - count] = [i]
else:
token2word.append(token2word[-1])
word2token[token2word[-1]].append(i)
count += 1
sample.token2word = token2word
sample.word2token = word2token
# input_subwords = sample.tokens[1:-1] # removing special tokens
candidates_symbols = self.special_symbols
if self.max_candidates > 0:
# truncate candidates
sample.candidates = sample.candidates[: self.max_candidates]
# add NME as a possible candidate
if self.use_nme:
sample.candidates.insert(0, NME_SYMBOL)
# training time sample mods
if not self.for_inference:
# check whether the sample has labels if not skip
if (
sample.triplets is None or len(sample.triplets) == 0
) and self.skip_empty_training_samples:
logger.warning(
"Sample {} has no labels, skipping".format(sample.sample_id)
)
continue
# add gold candidates if missing
if self.add_gold_candidates:
candidates_set = set(sample.candidates)
candidates_to_add = []
for candidate_title in sample.triplets:
if candidate_title["relation"]["name"] not in candidates_set:
candidates_to_add.append(
candidate_title["relation"]["name"]
)
if len(candidates_to_add) > 0:
# replacing last candidates with the gold ones
# this is done in order to preserve the ordering
added_gold_candidates = 0
gold_candidates_titles_set = set(
set(ct["relation"]["name"] for ct in sample.triplets)
)
for i in reversed(range(len(sample.candidates))):
if (
sample.candidates[i] not in gold_candidates_titles_set
and sample.candidates[i] != NME_SYMBOL
):
sample.candidates[i] = candidates_to_add[
added_gold_candidates
]
added_gold_candidates += 1
if len(candidates_to_add) == added_gold_candidates:
break
candidates_still_to_add = (
len(candidates_to_add) - added_gold_candidates
)
while (
len(sample.candidates) <= len(candidates_symbols)
and candidates_still_to_add != 0
):
sample.candidates.append(
candidates_to_add[added_gold_candidates]
)
added_gold_candidates += 1
candidates_still_to_add -= 1
# shuffle candidates
if (
isinstance(self.shuffle_candidates, bool)
and self.shuffle_candidates
) or (
isinstance(self.shuffle_candidates, float)
and np.random.uniform() < self.shuffle_candidates
):
np.random.shuffle(sample.candidates)
if NME_SYMBOL in sample.candidates:
sample.candidates.remove(NME_SYMBOL)
sample.candidates.insert(0, NME_SYMBOL)
# flip candidates
if (
isinstance(self.flip_candidates, bool) and self.flip_candidates
) or (
isinstance(self.flip_candidates, float)
and np.random.uniform() < self.flip_candidates
):
for i in range(len(sample.candidates) - 1):
if np.random.uniform() < 0.5:
sample.candidates[i], sample.candidates[i + 1] = (
sample.candidates[i + 1],
sample.candidates[i],
)
if NME_SYMBOL in sample.candidates:
sample.candidates.remove(NME_SYMBOL)
sample.candidates.insert(0, NME_SYMBOL)
# candidates encoding
candidates_symbols = candidates_symbols[: len(sample.candidates)]
relations_defs = [
"{} {}".format(cs, self.relations_definitions[ct])
if ct != NME_SYMBOL
else NME_SYMBOL
for cs, ct in zip(candidates_symbols, sample.candidates)
]
if self.entities_definitions is not None:
candidates_entities_symbols = list(self.special_symbols_entities)
candidates_entities_symbols = candidates_entities_symbols[
: len(self.entities_definitions)
]
entity_defs = [
"{} {}".format(cs, self.entities_definitions[ct])
for cs, ct in zip(
candidates_entities_symbols, self.entities_definitions.keys()
)
]
relations_defs = (
entity_defs + [self.tokenizer.sep_token] + relations_defs
)
candidates_encoding_result = self.tokenizer.batch_encode_plus(
relations_defs,
add_special_tokens=False,
).input_ids
# drop candidates if the number of input tokens is too long for the model
if (
sum(map(len, candidates_encoding_result))
+ len(input_subwords)
+ 20 # + 20 special tokens
> self.model_max_length
):
if self.for_inference:
acceptable_tokens_from_candidates = (
self.model_max_length - 20 - len(input_subwords)
)
while (
cum_len + len(candidates_encoding_result[i])
< acceptable_tokens_from_candidates
):
cum_len += len(candidates_encoding_result[i])
i += 1
candidates_encoding_result = candidates_encoding_result[:i]
if self.entities_definitions is not None:
candidates_symbols = candidates_symbols[
: i - len(self.entities_definitions)
]
sample.candidates = sample.candidates[
: i - len(self.entities_definitions)
]
else:
candidates_symbols = candidates_symbols[:i]
sample.candidates = sample.candidates[:i]
else:
gold_candidates_set = set(
[wl["relation"]["name"] for wl in sample.triplets]
)
gold_candidates_indices = [
i
for i, wc in enumerate(sample.candidates)
if wc in gold_candidates_set
]
if self.entities_definitions is not None:
gold_candidates_indices = [
i + len(self.entities_definitions)
for i in gold_candidates_indices
]
# add entities indices
gold_candidates_indices = gold_candidates_indices + list(
range(len(self.entities_definitions))
)
necessary_taken_tokens = sum(
map(
len,
[
candidates_encoding_result[i]
for i in gold_candidates_indices
],
)
)
acceptable_tokens_from_candidates = (
self.model_max_length
- 20
- len(input_subwords)
- necessary_taken_tokens
)
assert acceptable_tokens_from_candidates > 0
i = 0
cum_len = 0
while (
cum_len + len(candidates_encoding_result[i])
< acceptable_tokens_from_candidates
):
if i not in gold_candidates_indices:
cum_len += len(candidates_encoding_result[i])
i += 1
new_indices = sorted(
list(set(list(range(i)) + gold_candidates_indices))
)
np.random.shuffle(new_indices)
candidates_encoding_result = [
candidates_encoding_result[i] for i in new_indices
]
if self.entities_definitions is not None:
sample.candidates = [
sample.candidates[i - len(self.entities_definitions)]
for i in new_indices
]
candidates_symbols = candidates_symbols[
: i - len(self.entities_definitions)
]
else:
candidates_symbols = [
candidates_symbols[i] for i in new_indices
]
sample.window_candidates = [
sample.window_candidates[i] for i in new_indices
]
if len(sample.candidates) == 0:
logger.warning(
"Sample {} has no candidates after truncation due to max length".format(
sample.sample_id
)
)
continue
# final input_ids build
input_ids = self._build_input_ids(
sentence_input_ids=input_subwords,
candidates_input_ids=candidates_encoding_result,
)
# complete input building (e.g. attention / prediction mask)
tokenization_output = self._build_tokenizer_essentials(
input_ids, input_subwords
)
# labels creation
start_labels, end_labels, disambiguation_labels, relation_labels = (
None,
None,
None,
None,
)
if sample.entities is not None and len(sample.entities) > 0:
(
start_labels,
end_labels,
disambiguation_labels,
relation_labels,
) = self._build_labels(
sample,
tokenization_output,
)
yield {
"input_ids": tokenization_output.input_ids,
"attention_mask": tokenization_output.attention_mask,
"token_type_ids": tokenization_output.token_type_ids,
"prediction_mask": tokenization_output.prediction_mask,
"special_symbols_mask": tokenization_output.special_symbols_mask,
"special_symbols_mask_entities": tokenization_output.special_symbols_mask_entities,
"sample": sample,
"start_labels": start_labels,
"end_labels": end_labels,
"disambiguation_labels": disambiguation_labels,
"relation_labels": relation_labels,
"predictable_candidates": candidates_symbols,
}
def preshuffle_elements(self, dataset_elements: List):
# This shuffling is done so that when using the sorting function,
# if it is deterministic given a collection and its order, we will
# make the whole operation not deterministic anymore.
# Basically, the aim is not to build every time the same batches.
if not self.for_inference:
dataset_elements = np.random.permutation(dataset_elements)
sorting_fn = (
lambda elem: add_noise_to_value(
sum(len(elem[k]) for k in self.sorting_fields),
noise_param=self.noise_param,
)
if not self.for_inference
else sum(len(elem[k]) for k in self.sorting_fields)
)
dataset_elements = sorted(dataset_elements, key=sorting_fn)
if self.for_inference:
return dataset_elements
ds = list(chunks(dataset_elements, 64)) # todo: modified
np.random.shuffle(ds)
return flatten(ds)
def materialize_batches(
self, dataset_elements: List[Dict[str, Any]]
) -> Generator[Dict[str, Any], None, None]:
if self.prebatch:
dataset_elements = self.preshuffle_elements(dataset_elements)
current_batch = []
# function that creates a batch from the 'current_batch' list
def output_batch() -> Dict[str, Any]:
assert (
len(
set([len(elem["predictable_candidates"]) for elem in current_batch])
)
== 1
), " ".join(
map(
str, [len(elem["predictable_candidates"]) for elem in current_batch]
)
)
batch_dict = dict()
de_values_by_field = {
fn: [de[fn] for de in current_batch if fn in de]
for fn in self.fields_batcher
}
# in case you provide fields batchers but in the batch
# there are no elements for that field
de_values_by_field = {
fn: fvs for fn, fvs in de_values_by_field.items() if len(fvs) > 0
}
assert len(set([len(v) for v in de_values_by_field.values()]))
# todo: maybe we should report the user about possible
# fields filtering due to "None" instances
de_values_by_field = {
fn: fvs
for fn, fvs in de_values_by_field.items()
if all([fv is not None for fv in fvs])
}
for field_name, field_values in de_values_by_field.items():
field_batch = (
self.fields_batcher[field_name](field_values)
if self.fields_batcher[field_name] is not None
else field_values
)
batch_dict[field_name] = field_batch
return batch_dict
max_len_discards, min_len_discards = 0, 0
should_token_batch = self.batch_size is None
curr_pred_elements = -1
for de in dataset_elements:
if (
should_token_batch
and self.max_batch_size != -1
and len(current_batch) == self.max_batch_size
) or (not should_token_batch and len(current_batch) == self.batch_size):
yield output_batch()
current_batch = []
curr_pred_elements = -1
# todo support max length (and min length) as dicts
too_long_fields = [
k
for k in de
if self.max_length != -1
and torch.is_tensor(de[k])
and len(de[k]) > self.max_length
]
if len(too_long_fields) > 0:
max_len_discards += 1
continue
too_short_fields = [
k
for k in de
if self.min_length != -1
and torch.is_tensor(de[k])
and len(de[k]) < self.min_length
]
if len(too_short_fields) > 0:
min_len_discards += 1
continue
if should_token_batch:
de_len = sum(len(de[k]) for k in self.batching_fields)
future_max_len = max(
de_len,
max(
[
sum(len(bde[k]) for k in self.batching_fields)
for bde in current_batch
],
default=0,
),
)
future_tokens_per_batch = future_max_len * (len(current_batch) + 1)
num_predictable_candidates = len(de["predictable_candidates"])
if len(current_batch) > 0 and (
future_tokens_per_batch >= self.tokens_per_batch
or (
num_predictable_candidates != curr_pred_elements
and curr_pred_elements != -1
)
):
yield output_batch()
current_batch = []
current_batch.append(de)
curr_pred_elements = len(de["predictable_candidates"])
if len(current_batch) != 0 and not self.drop_last:
yield output_batch()
if max_len_discards > 0:
if self.for_inference:
logger.warning(
f"WARNING: Inference mode is True but {max_len_discards} samples longer than max length were "
f"found. The {max_len_discards} samples will be DISCARDED. If you are doing some kind of evaluation"
f", this can INVALIDATE results. This might happen if the max length was not set to -1 or if the "
f"sample length exceeds the maximum length supported by the current model."
)
else:
logger.warning(
f"During iteration, {max_len_discards} elements were "
f"discarded since longer than max length {self.max_length}"
)
if min_len_discards > 0:
if self.for_inference:
logger.warning(
f"WARNING: Inference mode is True but {min_len_discards} samples shorter than min length were "
f"found. The {min_len_discards} samples will be DISCARDED. If you are doing some kind of evaluation"
f", this can INVALIDATE results. This might happen if the min length was not set to -1 or if the "
f"sample length is shorter than the minimum length supported by the current model."
)
else:
logger.warning(
f"During iteration, {min_len_discards} elements were "
f"discarded since shorter than min length {self.min_length}"
)
def main():
special_symbols = [NME_SYMBOL] + [f"R-{i}" for i in range(50)]
relik_dataset = RelikREDataset(
"/home/huguetcabot/alby-re/alby/data/nyt-alby+/valid.jsonl",
materialize_samples=False,
transformer_model="microsoft/deberta-v3-base",
special_symbols=special_symbols,
shuffle_candidates=False,
flip_candidates=False,
for_inference=True,
)
for batch in relik_dataset:
print(batch)
exit(0)
if __name__ == "__main__":
main()