Spaces:
Sleeping
Sleeping
File size: 6,642 Bytes
626eca0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
from typing import Dict, List
from lightning.pytorch.callbacks import Callback
from reader.data.relik_reader_sample import RelikReaderSample
from relik.reader.relik_reader_predictor import RelikReaderPredictor
from relik.reader.utils.metrics import compute_metrics
class StrongMatching:
def __call__(self, predicted_samples: List[RelikReaderSample]) -> Dict:
# accumulators
correct_predictions, total_predictions, total_gold = (
0,
0,
0,
)
correct_predictions_strict, total_predictions_strict = (
0,
0,
)
correct_predictions_bound, total_predictions_bound = (
0,
0,
)
correct_span_predictions, total_span_predictions, total_gold_spans = 0, 0, 0
# collect data from samples
for sample in predicted_samples:
if sample.triplets is None:
sample.triplets = []
if sample.entity_candidates:
predicted_annotations_strict = set(
[
(
triplet["subject"]["start"],
triplet["subject"]["end"],
triplet["subject"]["type"],
triplet["relation"]["name"],
triplet["object"]["start"],
triplet["object"]["end"],
triplet["object"]["type"],
)
for triplet in sample.predicted_relations
]
)
gold_annotations_strict = set(
[
(
triplet["subject"]["start"],
triplet["subject"]["end"],
triplet["subject"]["type"],
triplet["relation"]["name"],
triplet["object"]["start"],
triplet["object"]["end"],
triplet["object"]["type"],
)
for triplet in sample.triplets
]
)
predicted_spans_strict = set(sample.predicted_entities)
gold_spans_strict = set(sample.entities)
# strict
correct_span_predictions += len(
predicted_spans_strict.intersection(gold_spans_strict)
)
total_span_predictions += len(predicted_spans_strict)
total_gold_spans += len(gold_spans_strict)
correct_predictions_strict += len(
predicted_annotations_strict.intersection(gold_annotations_strict)
)
total_predictions_strict += len(predicted_annotations_strict)
predicted_annotations = set(
[
(
triplet["subject"]["start"],
triplet["subject"]["end"],
-1,
triplet["relation"]["name"],
triplet["object"]["start"],
triplet["object"]["end"],
-1,
)
for triplet in sample.predicted_relations
]
)
gold_annotations = set(
[
(
triplet["subject"]["start"],
triplet["subject"]["end"],
-1,
triplet["relation"]["name"],
triplet["object"]["start"],
triplet["object"]["end"],
-1,
)
for triplet in sample.triplets
]
)
predicted_spans = set(
[(ss, se) for (ss, se, _) in sample.predicted_entities]
)
gold_spans = set([(ss, se) for (ss, se, _) in sample.entities])
total_gold_spans += len(gold_spans)
correct_predictions_bound += len(predicted_spans.intersection(gold_spans))
total_predictions_bound += len(predicted_spans)
total_predictions += len(predicted_annotations)
total_gold += len(gold_annotations)
# correct relation extraction
correct_predictions += len(
predicted_annotations.intersection(gold_annotations)
)
span_precision, span_recall, span_f1 = compute_metrics(
correct_span_predictions, total_span_predictions, total_gold_spans
)
bound_precision, bound_recall, bound_f1 = compute_metrics(
correct_predictions_bound, total_predictions_bound, total_gold_spans
)
precision, recall, f1 = compute_metrics(
correct_predictions, total_predictions, total_gold
)
if sample.entity_candidates:
precision_strict, recall_strict, f1_strict = compute_metrics(
correct_predictions_strict, total_predictions_strict, total_gold
)
return {
"span-precision": span_precision,
"span-recall": span_recall,
"span-f1": span_f1,
"precision": precision,
"recall": recall,
"f1": f1,
"precision-strict": precision_strict,
"recall-strict": recall_strict,
"f1-strict": f1_strict,
}
else:
return {
"span-precision": bound_precision,
"span-recall": bound_recall,
"span-f1": bound_f1,
"precision": precision,
"recall": recall,
"f1": f1,
}
class REStrongMatchingCallback(Callback):
def __init__(self, dataset_path: str, dataset_conf) -> None:
super().__init__()
self.dataset_path = dataset_path
self.dataset_conf = dataset_conf
self.strong_matching_metric = StrongMatching()
def on_validation_epoch_start(self, trainer, pl_module) -> None:
relik_reader_predictor = RelikReaderPredictor(pl_module.relik_reader_re_model)
predicted_samples = relik_reader_predictor._predict(
self.dataset_path,
None,
self.dataset_conf,
)
predicted_samples = list(predicted_samples)
for k, v in self.strong_matching_metric(predicted_samples).items():
pl_module.log(f"val_{k}", v)
|