Update app.py
Browse files
app.py
CHANGED
@@ -6,15 +6,23 @@ from timeit import default_timer as timer
|
|
6 |
|
7 |
model,transform=create_model()
|
8 |
model=model.to("cpu")
|
9 |
-
model.load_state_dict(
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
class_names = ["pizza","steak","sushi"]
|
11 |
def predict(model,image):
|
12 |
start=timer()
|
13 |
-
image=transform(image).unsqueeze(0)
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
18 |
return pred,td
|
19 |
|
20 |
inputs = gr.Image(type="pil", label = "Resim")
|
|
|
6 |
|
7 |
model,transform=create_model()
|
8 |
model=model.to("cpu")
|
9 |
+
model.load_state_dict(
|
10 |
+
torch.load(
|
11 |
+
f="deneme_modeli.pth",
|
12 |
+
map_location=torch.device("cpu"), # load to CPU
|
13 |
+
)
|
14 |
+
)
|
15 |
+
|
16 |
class_names = ["pizza","steak","sushi"]
|
17 |
def predict(model,image):
|
18 |
start=timer()
|
19 |
+
image=transform(image).unsqueeze(0)
|
20 |
+
model.eval()
|
21 |
+
with torch.inference_mode:
|
22 |
+
output=model(image)
|
23 |
+
|
24 |
+
pred={class_names[i]:torch.softmax(output,dim=1)[0][i].item() for i in range(len(class_names))}
|
25 |
+
td=timer()-start
|
26 |
return pred,td
|
27 |
|
28 |
inputs = gr.Image(type="pil", label = "Resim")
|