File size: 8,499 Bytes
38dbec8 64fccd8 38dbec8 64fccd8 38dbec8 a399d55 c2f384d a399d55 e2ccc8a 38dbec8 e2ccc8a 38dbec8 e2ccc8a 38dbec8 e2ccc8a 38dbec8 e2ccc8a 38dbec8 e2ccc8a 38dbec8 e2ccc8a 38dbec8 e2ccc8a 38dbec8 e2ccc8a 38dbec8 e2ccc8a 38dbec8 e2ccc8a 38dbec8 59beb43 1a20c54 38dbec8 1a20c54 38dbec8 1a20c54 38dbec8 1a20c54 38dbec8 1a20c54 38dbec8 1a20c54 38dbec8 1a20c54 38dbec8 64fccd8 1a20c54 64fccd8 f700879 1a20c54 38dbec8 1a20c54 64fccd8 1a20c54 38dbec8 1a20c54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import os
import random
import tempfile
import time
import zipfile
from contextlib import nullcontext
from functools import lru_cache
from typing import Any
import cv2
import gradio as gr
import numpy as np
import torch
import trimesh
from gradio_litmodel3d import LitModel3D
from gradio_pointcloudeditor import PointCloudEditor
from PIL import Image
from transparent_background import Remover
os.system("USE_CUDA=1 pip install -vv --no-build-isolation ./texture_baker ./uv_unwrapper")
os.system("pip install ./deps/pynim-0.0.3-cp310-cp310-linux_x86_64.whl")
import spar3d.utils as spar3d_utils
from spar3d.models.mesh import QUAD_REMESH_AVAILABLE, TRIANGLE_REMESH_AVAILABLE
from spar3d.system import SPAR3D
os.environ["GRADIO_TEMP_DIR"] = os.path.join(os.environ.get("TMPDIR", "/tmp"), "gradio")
bg_remover = Remover() # default setting
COND_WIDTH = 512
COND_HEIGHT = 512
COND_DISTANCE = 2.2
COND_FOVY = 0.591627
BACKGROUND_COLOR = [0.5, 0.5, 0.5]
# Cached. Doesn't change
c2w_cond = spar3d_utils.default_cond_c2w(COND_DISTANCE)
intrinsic, intrinsic_normed_cond = spar3d_utils.create_intrinsic_from_fov_rad(
COND_FOVY, COND_HEIGHT, COND_WIDTH
)
generated_files = []
# Delete previous gradio temp dir folder
if os.path.exists(os.environ["GRADIO_TEMP_DIR"]):
print(f"Deleting {os.environ['GRADIO_TEMP_DIR']}")
import shutil
shutil.rmtree(os.environ["GRADIO_TEMP_DIR"])
device = spar3d_utils.get_device()
model = SPAR3D.from_pretrained(
"stabilityai/stable-point-aware-3d",
config_name="config.yaml",
weight_name="model.safetensors",
)
model.eval()
model = model.to(device)
example_files = [
os.path.join("demo_files/examples", f) for f in os.listdir("demo_files/examples")
]
def create_zip_file(glb_file, pc_file, illumination_file):
if not all([glb_file, pc_file, illumination_file]):
return None
# Create a temporary zip file
temp_dir = tempfile.mkdtemp()
zip_path = os.path.join(temp_dir, "spar3d_output.zip")
with zipfile.ZipFile(zip_path, "w") as zipf:
zipf.write(glb_file, "mesh.glb")
zipf.write(pc_file, "points.ply")
zipf.write(illumination_file, "illumination.hdr")
generated_files.append(zip_path)
return zip_path
def forward_model(
batch,
system,
guidance_scale=3.0,
seed=0,
device="cuda",
remesh_option="none",
vertex_count=-1,
texture_resolution=1024,
):
batch_size = batch["rgb_cond"].shape[0]
# prepare the condition for point cloud generation
# set seed
random.seed(seed)
torch.manual_seed(seed)
np.random.seed(seed)
cond_tokens = system.forward_pdiff_cond(batch)
if "pc_cond" not in batch:
sample_iter = system.sampler.sample_batch_progressive(
batch_size,
cond_tokens,
guidance_scale=guidance_scale,
device=device,
)
for x in sample_iter:
samples = x["xstart"]
batch["pc_cond"] = samples.permute(0, 2, 1).float()
batch["pc_cond"] = spar3d_utils.normalize_pc_bbox(batch["pc_cond"])
# subsample to the 512 points
batch["pc_cond"] = batch["pc_cond"][
:, torch.randperm(batch["pc_cond"].shape[1])[:512]
]
# get the point cloud
xyz = batch["pc_cond"][0, :, :3].cpu().numpy()
color_rgb = (batch["pc_cond"][0, :, 3:6] * 255).cpu().numpy().astype(np.uint8)
pc_rgb_trimesh = trimesh.PointCloud(vertices=xyz, colors=color_rgb)
# forward for the final mesh
trimesh_mesh, _glob_dict = model.generate_mesh(
batch,
texture_resolution,
remesh=remesh_option,
vertex_count=vertex_count,
estimate_illumination=True,
)
trimesh_mesh = trimesh_mesh[0]
illumination = _glob_dict["illumination"]
return trimesh_mesh, pc_rgb_trimesh, illumination.cpu().detach().numpy()[0]
def process_model_run(
fr_res,
guidance_scale,
random_seed,
pc_cond,
remesh_option,
vertex_count_type,
vertex_count,
texture_resolution,
):
start = time.time()
with torch.no_grad():
with (
torch.autocast(device_type=device, dtype=torch.bfloat16)
if "cuda" in device
else nullcontext()
):
model_batch = create_batch(fr_res)
model_batch = {k: v.to(device) for k, v in model_batch.items()}
trimesh_mesh, trimesh_pc, illumination_map = forward_model(
model_batch,
model,
guidance_scale=guidance_scale,
seed=random_seed,
device="cuda",
remesh_option=remesh_option.lower(),
vertex_count=vertex_count,
texture_resolution=texture_resolution,
)
# Create new tmp file
temp_dir = tempfile.mkdtemp()
tmp_file = os.path.join(temp_dir, "mesh.glb")
trimesh_mesh.export(tmp_file, file_type="glb", include_normals=True)
generated_files.append(tmp_file)
tmp_file_pc = os.path.join(temp_dir, "points.ply")
trimesh_pc.export(tmp_file_pc)
generated_files.append(tmp_file_pc)
tmp_file_illumination = os.path.join(temp_dir, "illumination.hdr")
cv2.imwrite(tmp_file_illumination, illumination_map)
generated_files.append(tmp_file_illumination)
print("Generation took:", time.time() - start, "s")
return tmp_file, tmp_file_pc, tmp_file_illumination, trimesh_pc
def create_batch(input_image: Image) -> dict[str, Any]:
img_cond = (
torch.from_numpy(
np.asarray(input_image.resize((COND_WIDTH, COND_HEIGHT))).astype(np.float32)
/ 255.0
)
.float()
.clip(0, 1)
)
mask_cond = img_cond[:, :, -1:]
rgb_cond = torch.lerp(
torch.tensor(BACKGROUND_COLOR)[None, None, :], img_cond[:, :, :3], mask_cond
)
batch_elem = {
"rgb_cond": rgb_cond,
"mask_cond": mask_cond,
"c2w_cond": c2w_cond.unsqueeze(0),
"intrinsic_cond": intrinsic.unsqueeze(0),
"intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0),
}
# Add batch dim
batched = {k: v.unsqueeze(0) for k, v in batch_elem.items()}
return batched
def remove_background(input_image: Image) -> Image:
return bg_remover.process(input_image.convert("RGB"))
def auto_process(input_image):
if input_image is None:
return None, None, None, None
# Default values
guidance_scale = 3.0
random_seed = 0
foreground_ratio = 1.3
remesh_option = "None"
vertex_count_type = "Keep Vertex Count"
vertex_count = 2000
texture_resolution = 1024
no_crop = False
pc_cond = None
# First step: Remove background
rem_removed = remove_background(input_image)
fr_res = spar3d_utils.foreground_crop(
rem_removed,
crop_ratio=foreground_ratio,
newsize=(COND_WIDTH, COND_HEIGHT),
no_crop=no_crop,
)
# Second step: Run model
glb_file, pc_file, illumination_file, pc_list = process_model_run(
fr_res,
guidance_scale,
random_seed,
pc_cond,
remesh_option,
vertex_count_type,
vertex_count,
texture_resolution,
)
zip_file = create_zip_file(glb_file, pc_file, illumination_file)
return glb_file, illumination_file, zip_file, pc_list
# Simplified interface
with gr.Blocks() as demo:
gr.Markdown(
"""
# SPAR3D: Stable Point-Aware Reconstruction of 3D Objects from Single Images
Upload an image to generate a 3D model.
"""
)
with gr.Row():
with gr.Column():
input_img = gr.Image(
type="pil",
label="Upload Image",
sources=["upload", "click"],
image_mode="RGBA"
)
with gr.Column():
output_3d = LitModel3D(
label="3D Model",
clear_color=[0.0, 0.0, 0.0, 0.0],
tonemapping="aces",
contrast=1.0,
scale=1.0,
)
download_all_btn = gr.File(
label="Download Model (ZIP)",
file_count="single",
visible=True
)
input_img.upload(
auto_process,
inputs=[input_img],
outputs=[
output_3d,
gr.State(), # for illumination file
download_all_btn,
gr.State(), # for point cloud list
],
)
demo.queue().launch(share=False) |