|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Dict, Iterator
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from .gaussian_diffusion import GaussianDiffusion
|
|
|
|
|
|
class PointCloudSampler:
|
|
"""
|
|
A wrapper around a model that produces conditional sample tensors.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
model: nn.Module,
|
|
diffusion: GaussianDiffusion,
|
|
num_points: int,
|
|
point_dim: int = 3,
|
|
guidance_scale: float = 3.0,
|
|
clip_denoised: bool = True,
|
|
sigma_min: float = 1e-3,
|
|
sigma_max: float = 120,
|
|
s_churn: float = 3,
|
|
):
|
|
self.model = model
|
|
self.num_points = num_points
|
|
self.point_dim = point_dim
|
|
self.guidance_scale = guidance_scale
|
|
self.clip_denoised = clip_denoised
|
|
self.sigma_min = sigma_min
|
|
self.sigma_max = sigma_max
|
|
self.s_churn = s_churn
|
|
|
|
self.diffusion = diffusion
|
|
|
|
def sample_batch_progressive(
|
|
self,
|
|
batch_size: int,
|
|
condition: torch.Tensor,
|
|
noise=None,
|
|
device=None,
|
|
guidance_scale=None,
|
|
) -> Iterator[Dict[str, torch.Tensor]]:
|
|
"""
|
|
Generate samples progressively using classifier-free guidance.
|
|
|
|
Args:
|
|
batch_size: Number of samples to generate
|
|
condition: Conditioning tensor
|
|
noise: Optional initial noise tensor
|
|
device: Device to run on
|
|
guidance_scale: Optional override for guidance scale
|
|
|
|
Returns:
|
|
Iterator of dicts containing intermediate samples
|
|
"""
|
|
if guidance_scale is None:
|
|
guidance_scale = self.guidance_scale
|
|
|
|
sample_shape = (batch_size, self.point_dim, self.num_points)
|
|
|
|
|
|
if guidance_scale != 1 and guidance_scale != 0:
|
|
condition = torch.cat([condition, torch.zeros_like(condition)], dim=0)
|
|
if noise is not None:
|
|
noise = torch.cat([noise, noise], dim=0)
|
|
model_kwargs = {"condition": condition}
|
|
|
|
internal_batch_size = batch_size
|
|
if guidance_scale != 1 and guidance_scale != 0:
|
|
model = self._uncond_guide_model(self.model, guidance_scale)
|
|
internal_batch_size *= 2
|
|
else:
|
|
model = self.model
|
|
|
|
samples_it = self.diffusion.ddim_sample_loop_progressive(
|
|
model,
|
|
shape=(internal_batch_size, *sample_shape[1:]),
|
|
model_kwargs=model_kwargs,
|
|
device=device,
|
|
clip_denoised=self.clip_denoised,
|
|
noise=noise,
|
|
)
|
|
|
|
for x in samples_it:
|
|
samples = {
|
|
"xstart": x["pred_xstart"][:batch_size],
|
|
"xprev": x["sample"][:batch_size] if "sample" in x else x["x"],
|
|
}
|
|
yield samples
|
|
|
|
def _uncond_guide_model(self, model: nn.Module, scale: float) -> nn.Module:
|
|
"""
|
|
Wraps the model for classifier-free guidance.
|
|
"""
|
|
|
|
def model_fn(x_t, ts, **kwargs):
|
|
half = x_t[: len(x_t) // 2]
|
|
combined = torch.cat([half, half], dim=0)
|
|
model_out = model(combined, ts, **kwargs)
|
|
|
|
eps, rest = model_out[:, : self.point_dim], model_out[:, self.point_dim :]
|
|
cond_eps, uncond_eps = torch.chunk(eps, 2, dim=0)
|
|
half_eps = uncond_eps + scale * (cond_eps - uncond_eps)
|
|
eps = torch.cat([half_eps, half_eps], dim=0)
|
|
return torch.cat([eps, rest], dim=1)
|
|
|
|
return model_fn
|
|
|