Spaces:
Sleeping
Sleeping
reyemhorts
commited on
Commit
•
d895362
1
Parent(s):
c7b7044
first commit
Browse files- app.py +53 -0
- load_db.py +51 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
from pypdf import PdfReader
|
4 |
+
from typing import Optional
|
5 |
+
import json
|
6 |
+
|
7 |
+
from load_db import load_vectorestore_from_pdf
|
8 |
+
|
9 |
+
|
10 |
+
TEMP_PDF_PATH = "temp.pdf"
|
11 |
+
retriever = None
|
12 |
+
db = None
|
13 |
+
documents = None
|
14 |
+
|
15 |
+
def pdf_to_text(file_path:str, page_num:Optional[int]=None):
|
16 |
+
reader = PdfReader(file_path)
|
17 |
+
if page_num:
|
18 |
+
return reader.pages[page_num-1].extract_text()
|
19 |
+
text = ""
|
20 |
+
for page in reader.pages:
|
21 |
+
page_text = page.extract_text()
|
22 |
+
text += page_text
|
23 |
+
return text
|
24 |
+
|
25 |
+
def load_vectore_store():
|
26 |
+
global retriever, db
|
27 |
+
db = load_vectorestore_from_pdf(TEMP_PDF_PATH,persist=False)
|
28 |
+
retriever = db.as_retriever(search_kwargs={"k": 4})
|
29 |
+
|
30 |
+
def load_pdf(inp):
|
31 |
+
# Convert bytes back to a PDF file
|
32 |
+
with open(TEMP_PDF_PATH, "wb") as f:
|
33 |
+
f.write(inp)
|
34 |
+
# Extract text from the PDF file
|
35 |
+
text = pdf_to_text(TEMP_PDF_PATH)
|
36 |
+
load_vectore_store()
|
37 |
+
#print(text)
|
38 |
+
return text
|
39 |
+
|
40 |
+
|
41 |
+
with gr.Blocks() as app:
|
42 |
+
file = gr.File(type="binary")
|
43 |
+
load_file_button = gr.Button("Load")
|
44 |
+
with gr.Accordion("Modulhandbuch anzeigen",open=False):
|
45 |
+
handbook = gr.TextArea(label="Modulhandbuch")
|
46 |
+
|
47 |
+
load_file_button.click(load_pdf,inputs=file,outputs=handbook)
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
if __name__ == "__main__":
|
53 |
+
app.launch(debug=True)
|
load_db.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dotenv import load_dotenv
|
2 |
+
#from langchain.embeddings import HuggingFaceEmbeddings
|
3 |
+
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
|
4 |
+
|
5 |
+
from langchain.vectorstores import Chroma
|
6 |
+
from langchain.text_splitter import CharacterTextSplitter
|
7 |
+
from langchain.llms import OpenAI
|
8 |
+
from langchain.chains import ConversationalRetrievalChain, RetrievalQA
|
9 |
+
from langchain.chat_models import ChatOpenAI
|
10 |
+
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
11 |
+
from langchain.document_loaders import TextLoader, PyPDFLoader
|
12 |
+
from typing import Optional
|
13 |
+
import os
|
14 |
+
|
15 |
+
|
16 |
+
load_dotenv()
|
17 |
+
|
18 |
+
embeddings_model_name ="multi-qa-MiniLM-L6-cos-v1"
|
19 |
+
persist_directory = "db"
|
20 |
+
target_source_chunks = 4
|
21 |
+
openai_api_key = os.environ.get('OPENAI_API_KEY')
|
22 |
+
|
23 |
+
|
24 |
+
#embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
|
25 |
+
embeddings = SentenceTransformerEmbeddings(model_name=embeddings_model_name)
|
26 |
+
|
27 |
+
|
28 |
+
def load_vectorestore_from_pdf(path:str, embeddings=embeddings, persist:Optional[bool]=True):
|
29 |
+
|
30 |
+
loader = PyPDFLoader(path)
|
31 |
+
documents = loader.load()
|
32 |
+
#print(len(documents))
|
33 |
+
|
34 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
35 |
+
documents = text_splitter.split_documents(documents)
|
36 |
+
|
37 |
+
#print(len(documents))
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
if not persist:
|
42 |
+
vectorstore = Chroma.from_documents(documents, embeddings, persist_directory=None)
|
43 |
+
return vectorstore
|
44 |
+
vectorstore = Chroma.from_documents(documents, embeddings, persist_directory=persist_directory)
|
45 |
+
vectorstore.persist()
|
46 |
+
vectorstore = None
|
47 |
+
return None
|
48 |
+
|
49 |
+
|
50 |
+
if __name__ == "__main__":
|
51 |
+
load_vectorestore_from_pdf()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pypdf
|
2 |
+
sentence-transformers
|
3 |
+
openai
|
4 |
+
gradio
|
5 |
+
langchain
|