Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
from pypdf import PdfReader | |
from typing import Optional | |
import json | |
#from load_db import load_vectorestore_from_pdf | |
#from oai import chat_prompt, get_comparison | |
from io import BytesIO | |
TEMP_PDF_PATH = "temp.pdf" | |
retriever = None | |
db = None | |
documents = None | |
# with open("all_unique_modules.json","r",encoding="UTF-8") as f: | |
# courses = json.load(f) | |
# def get_course(code:str)->str|None: | |
# #print(len(courses)) | |
# for c in courses: | |
# if not "Kurscode" in c: | |
# continue | |
# if c["Kurscode"].strip()==code.strip(): | |
# return f"Kursbeschreibung:\n{c['Description']}\nKursziele:\n{c['Kursziele']}\nKursinhalte:\n{c['Kursinhalt']}" | |
# return None | |
def pdf_to_text(file_path, page_num:Optional[int]=None): | |
reader = PdfReader(file_path) | |
if page_num: | |
return reader.pages[page_num-1].extract_text() | |
text = "" | |
for page in reader.pages: | |
page_text = page.extract_text() | |
text += page_text | |
return text | |
def api_pdf_to_text(file_path, page_num:Optional[int]=None): | |
reader = PdfReader(file_path) | |
pages = [] | |
if page_num: | |
return reader.pages[page_num-1].extract_text() | |
for i, page in enumerate(reader.pages): | |
page_text = page.extract_text() | |
pages.append({ | |
"page":i, | |
"text":page_text | |
}) | |
return pages | |
# def load_vectore_store(): | |
# global retriever, db | |
# db = load_vectorestore_from_pdf(TEMP_PDF_PATH,persist=False) | |
# retriever = db.as_retriever(search_kwargs={"k": 4}) | |
def load_pdf(inp): | |
# Convert bytes back to a PDF file | |
# with open(TEMP_PDF_PATH, "wb") as f: | |
# f.write(inp) | |
# Extract text from the PDF file | |
s = BytesIO(inp) | |
text = pdf_to_text(s) | |
#load_vectore_store() | |
#print(text) | |
return text | |
def api_load_pdf(inp): | |
# Extract text from the PDF file | |
s = BytesIO(inp) | |
text = api_pdf_to_text(s) | |
return json.dumps(text) | |
# def compare_with_gpt(iu_code:str,text:str, model_name:Optional[str]=None)->str|None: | |
# iu_course = get_course(iu_code) | |
# if iu_course == None: | |
# print("IU Course not found") | |
# return None | |
# if model_name != None: | |
# return get_comparison(iu_course,text,model_name=model_name) | |
# return get_comparison(iu_course,text,model_name="gpt-4") | |
# def get_relevant_docs(search:str, iu_course:str): | |
# global db, retriever, documents | |
# documents = [] | |
# final_res = "" | |
# documents = retriever.get_relevant_documents(f"Wo ist Modul/Kurs: {search.strip()}") | |
# for document_ in documents: | |
# print(f'\n>{document_.metadata["source"]} (Page {document_.metadata["page"]})') | |
# #print(">",document.page_content,"\n\n") | |
# final_res = f'{final_res}\n>{document_.metadata["source"]} (Page {document_.metadata["page"]}) :' | |
# get_relevant_docs_promt = f""" | |
# Du wirst 4 verschiedene Objecte in JSON erhalten und musst herausfinden welches ich suche. | |
# Es handelt sich dabei um Ausschnitte eines Modulhandbuches einer Hochschule. | |
# Ich suche die Modulbeschreibung von '{search}'. Suche danach in dem property 'page_content' | |
# Nenne die Page in den Metadaten des richtigen Objektes. Denk dir keinen Quatsch aus, wenn du die Modulbeschreibung nicht findest, sag es. | |
# Antworte in JSON format und fülle die werte page_found (bool) und page (int|None) aus. | |
# """.strip() | |
# messages = [ | |
# { | |
# "role": "system", "content": f"{get_relevant_docs_promt}" | |
# }, | |
# { | |
# "role": "system", "content": f"Das sind die 4 Dokumente:\n{documents}" | |
# } | |
# ] | |
# res = chat_prompt(messages=messages,model_name="gpt-4") #gpt-3.5-turbo-16k doesnt understand the task | |
# final_res = f'{final_res}\n\n{res}\n' | |
# res = json.loads(res) | |
# if res["page_found"] ==False: | |
# return final_res | |
# page_num = int(res["page"]) | |
# final_res = f'{final_res}\n\nDocument auf Seite >{page_num} identifiziert.\nPrüfe auf Vollständigkeit...\n' | |
# for doc in documents: | |
# if page_num == doc.metadata["page"]: | |
# print(page_num,"==",doc.metadata["page"]) | |
# document = doc | |
# break | |
# next_page = documents = db.get(where={"page":page_num+1}) #pdf_to_text("temp.pdf",page_num=page_num+1) | |
# if len(next_page["documents"]) > 0: | |
# next_page = next_page["documents"][0] | |
# words = next_page.split() | |
# first_40_words = words[:40] | |
# first_40_words_str = ' '.join(first_40_words) | |
# # get the 50 last words of the description | |
# words = document.page_content.split() | |
# last_50_words = words[-50:] | |
# # Join the words back into a string | |
# last_50_words_str = ' '.join(last_50_words) | |
# check_doc_complete_prompt= f""" | |
# Du wirst einen Auszug einer Modulbeschreibung eines Modules von einer Hochschule erhalten und sollst herausfinden, ob diese vollständig ist oder ob eventuell die nächste | |
# Seite auch noch Inhalte zum Modul hat. Solltest du eine Auflistung der Kompetenzen und Inhalte finden, ist die Modulbeschreibung vollständig. Wenn auf der Folgeseite nur noch Literaturangaben sind, ist die Modulbeschreibung bereits vollständig. | |
# Wenn der Auszug mit den Literaturangaben endet, ist die Modulbeschreibung vollständig. | |
# Antworte nur mit 'vollständig' und 'unvollständig'. | |
# Das Modul heißt [{search}]. Ist die Beschreibung vollständig oder fehlt etwas? Hier ist der Text: \n[{last_50_words_str}]. | |
# Das ist hier ist der Text der nächsten Seite:\n[{first_40_words_str}] | |
# """.strip() | |
# messages = [ | |
# { | |
# "role": "system", "content": f"{check_doc_complete_prompt}" | |
# } | |
# ] | |
# res = chat_prompt(messages=messages,model_name="gpt-3.5-turbo-16k") #gpt-3.5-turbo-16k | |
# #print("\nDie Beschreibung ist: ",res,"\n") | |
# final_res = f'{final_res}\nDie Beschreibung ist: {res}\n' | |
# description = f"{document.page_content}" | |
# if res == "unvollständig": | |
# description = f"{description}\n{next_page}" | |
# else: | |
# description = f"{document.page_content}" | |
# final_res = f'{final_res}\nDie Beschreibung ist: {description}\n' | |
# final_res = f'{final_res}\nSuche nach: {search}\nBeschreibung: {description}\n\n' | |
# res = compare_with_gpt(iu_course,description,model_name="gpt-3.5-turbo-16k") | |
# final_res = f'{final_res}\nIU-Kurs:{iu_course}\nErgebnis: {res}\n' | |
# return final_res | |
with gr.Blocks() as app: | |
file = gr.File(type="binary") | |
load_file_button = gr.Button("Load") | |
with gr.Accordion("Text anzeigen",open=False): | |
handbook = gr.TextArea(label="Modulhandbuch") | |
load_file_button.click(load_pdf,inputs=file,outputs=handbook) | |
with gr.Accordion("API",visible=False): | |
api_file = gr.File(type="binary") | |
api_load_file_button = gr.Button("Load") | |
api_handbook = gr.TextArea(label="Modulhandbuch") | |
api_load_file_button.click( | |
api_load_pdf, | |
inputs=api_file, | |
outputs=api_handbook, | |
api_name="file-to-text") | |
# with gr.Accordion("Kurse finden",open=False): | |
# with gr.Row(): | |
# course_query = gr.Textbox(label="Kursnamen der zu prüfenden Kurse") | |
# iu_ccode = gr.Textbox(label="IU Kurscode") | |
# course_description = gr.TextArea(label="Ergebnis der Prüfung") | |
# course_query.submit(get_relevant_docs,inputs=[course_query,iu_ccode],outputs=course_description) | |
if __name__ == "__main__": | |
app.launch(debug=True) | |