File size: 5,978 Bytes
b11ac48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
from itertools import product
import pandas as pd
import numpy as np
from scipy.spatial.distance import cosine
from nltk.corpus import framenet as fn
from sociofillmore.common.analyze_text import read_frames_of_interest
COSINE_THRESH = [0.1, 0.2, 0.3, 0.4, 0.5]
PREDICTION_FILES = {
"evalita-dev": {
"stupid-svm": "../stupid-svm-frameid/evalita_predictions.csv",
"lome-en": "misc/frame_prediction_output_lome-en_dev.csv",
"lome-it": "misc/frame_prediction_output_lome-it-best_dev.csv",
},
"evalita-test": {
"stupid-svm": "../stupid-svm-frameid/evalita_predictions_test.csv",
"lome-en": "misc/frame_prediction_output_lome-en_test.csv",
"lome-it": "misc/frame_prediction_output_lome-it-best_test.csv",
},
"rai_femicides": {
"stupid-svm": "../stupid-svm-frameid/rai_predictions.csv",
"lome-en": "misc/frame_prediction_output_lome-en_rai.csv",
"lome-it": "misc/frame_prediction_output_lome-it-best_rai.csv",
},
}
def load_embeddings(embedding_file):
frame_vocab = []
word_vocab = []
vectors = []
with open(embedding_file, encoding="utf-8") as f:
for line in f:
columns = line.split()
frame = columns[0]
words = tuple(columns[1].split("+"))
vector = np.array([float(i) for i in columns[2:]])
frame_vocab.append(frame)
word_vocab.append(words)
vectors.append(vector)
frames_to_idxs = {}
for i, frame in enumerate(frame_vocab):
frames_to_idxs[frame] = i
return np.array(vectors, dtype=np.float64), frames_to_idxs
def femicide_frame_distances(embeddings, frame_to_idx):
femicide_frames = read_frames_of_interest("femicides/rai")
print("Cosines: ")
for fr1, fr2 in product(femicide_frames, femicide_frames):
dist = cosine(embeddings[frame_to_idx[fr1]], embeddings[frame_to_idx[fr2]])
print(f"\t{fr1}-{fr2}: {dist:.4f}")
def embedding_scores(predictions, embeddings, frame_to_idx):
correct = 0
close_calls = {threshold: 0 for threshold in COSINE_THRESH}
total_dist = 0.0
for _, row in predictions.iterrows():
predicted = row["frame_pred"]
gold = row["frame_gold"]
dist = cosine(
embeddings[frame_to_idx[predicted]], embeddings[frame_to_idx[gold]]
)
if predicted == gold:
correct += 1
else:
for threshold in COSINE_THRESH:
if dist < threshold:
close_calls[threshold] += 1
total_dist += dist
print("#correct: ", correct / len(predictions))
print("#close calls: ")
for threshold in COSINE_THRESH:
print("\t", threshold, (close_calls[threshold]) / len(predictions))
print("#correct or close: ")
for threshold in COSINE_THRESH:
print("\t", threshold, (correct + close_calls[threshold]) / len(predictions))
print("avg cosine dist: ", total_dist / len(predictions))
def generalization_exp(predictions, evalita_train_counts, fn_frames, femicide_frames):
all_frames = predictions
ifn_frames = predictions[
predictions["frame_gold"].isin(evalita_train_counts["label"])
]
bfn_frames = predictions[predictions["frame_gold"].isin(fn_frames)]
rai_frames = predictions[predictions["frame_gold"].isin(femicide_frames)]
print("LEN (ALL/IFN/BFN/RAI:)")
print(
"\t".join(
[
str(len(preds))
for preds in [all_frames, ifn_frames, bfn_frames, rai_frames]
]
)
)
print("ACC (ALL/IFN/BFN/RAI:)")
print(
"\t".join(
[
str(len(preds[preds["frame_gold"] == preds["frame_pred"]]) / len(preds))
for preds in [all_frames, ifn_frames, bfn_frames, rai_frames]
]
)
)
def main():
evalita_train_counts = pd.read_csv(
"output/femicides/compare_lome_models/evalita_trainset_counts.csv"
)
fn_frames = {fr.name for fr in fn.frames()}
femicide_frames = read_frames_of_interest("femicides/rai")
evalita_train_counts = pd.read_csv(
"output/femicides/compare_lome_models/evalita_trainset_counts.csv"
)
for dataset in PREDICTION_FILES:
print(f"==={dataset}===")
for model, predictions_file in PREDICTION_FILES[dataset].items():
print(f"---{model}---")
predictions = pd.read_csv(predictions_file, index_col=0)
print("Total predictions:", len(predictions))
# predictions_with_fn_frames = predictions[
# predictions["frame_gold"].isin(fn_frames)
# & predictions["frame_pred"].isin(fn_frames)
# ]
# print("Predictions with FN frames: ", len(predictions_with_fn_frames))
# errors = predictions[predictions["frame_gold"] != predictions["frame_pred"]]
# print("Total errors: ", len(errors))
# errors_with_fn_frames = errors[
# errors["frame_gold"].isin(fn_frames) & errors["frame_pred"].isin(fn_frames)
# ]
# print("Errors with FN frames: ", len(errors_with_fn_frames))
# print("Loading embeddings...")
# embeddings, frame_to_idx = load_embeddings(
# "../bert-for-framenet/data/embeddings/bag_of_lu_embeddings.txt"
# )
# # femicide_frame_distances(embeddings, frame_to_idx)
# embedding_scores(predictions_with_fn_frames, embeddings, frame_to_idx)
if dataset == "rai_femicides":
predictions = predictions[predictions["frame_gold"].isin(femicide_frames)]
femicide_frames = read_frames_of_interest("femicides/rai")
generalization_exp(
predictions, evalita_train_counts, fn_frames, femicide_frames
)
print()
print()
if __name__ == "__main__":
main()
|