Spaces:
Runtime error
Runtime error
Delete app.py
Browse files
app.py
DELETED
@@ -1,702 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
"""
|
3 |
-
This is the full application script for VideoPainter.
|
4 |
-
It first checks for and (if necessary) installs missing dependencies.
|
5 |
-
When installing the custom packages (diffusers and app),
|
6 |
-
it uses the flag --no-build-isolation so that the installed torch is seen.
|
7 |
-
If the custom diffusers package fails to provide the expected submodules,
|
8 |
-
the script will force-install the official diffusers package.
|
9 |
-
"""
|
10 |
-
|
11 |
-
import os
|
12 |
-
import sys
|
13 |
-
import subprocess
|
14 |
-
import warnings
|
15 |
-
import time
|
16 |
-
import json
|
17 |
-
from collections import OrderedDict
|
18 |
-
|
19 |
-
warnings.filterwarnings("ignore")
|
20 |
-
|
21 |
-
###############################
|
22 |
-
# Set up temporary directories
|
23 |
-
###############################
|
24 |
-
GRADIO_TEMP_DIR = "./tmp_gradio"
|
25 |
-
os.makedirs(GRADIO_TEMP_DIR, exist_ok=True)
|
26 |
-
os.makedirs(os.path.join(GRADIO_TEMP_DIR, "track"), exist_ok=True)
|
27 |
-
os.makedirs(os.path.join(GRADIO_TEMP_DIR, "inpaint"), exist_ok=True)
|
28 |
-
os.environ["GRADIO_TEMP_DIR"] = GRADIO_TEMP_DIR
|
29 |
-
|
30 |
-
###############################
|
31 |
-
# Helper: Install package via pip
|
32 |
-
###############################
|
33 |
-
def install_package(package_spec):
|
34 |
-
print(f"Installing {package_spec} ...")
|
35 |
-
try:
|
36 |
-
subprocess.check_call([sys.executable, "-m", "pip", "install", package_spec])
|
37 |
-
print(f"Successfully installed {package_spec}")
|
38 |
-
return True
|
39 |
-
except Exception as e:
|
40 |
-
print(f"Failed to install {package_spec}: {e}")
|
41 |
-
return False
|
42 |
-
|
43 |
-
###############################
|
44 |
-
# Ensure PyTorch is present
|
45 |
-
###############################
|
46 |
-
print("Checking for PyTorch ...")
|
47 |
-
try:
|
48 |
-
import torch
|
49 |
-
print("PyTorch is already installed.")
|
50 |
-
except ImportError:
|
51 |
-
print("PyTorch not found, installing...")
|
52 |
-
if not install_package("torch>=2.0.0 torchvision>=0.15.0"):
|
53 |
-
print("Failed to install PyTorch, which is required.")
|
54 |
-
sys.exit(1)
|
55 |
-
|
56 |
-
###############################
|
57 |
-
# Check/install critical dependencies
|
58 |
-
###############################
|
59 |
-
critical_dependencies = [
|
60 |
-
("hydra", "hydra-core>=1.3.2"),
|
61 |
-
("omegaconf", "omegaconf>=2.3.0"),
|
62 |
-
("decord", "decord>=0.6.0"),
|
63 |
-
("diffusers", "diffusers>=0.24.0"), # This one is later replaced by our custom version.
|
64 |
-
("transformers", "transformers>=4.35.0"),
|
65 |
-
("gradio", "gradio>=4.0.0"),
|
66 |
-
("numpy", "numpy>=1.24.0"),
|
67 |
-
("cv2", "opencv-python>=4.8.0"),
|
68 |
-
("PIL", "Pillow>=10.0.0"),
|
69 |
-
("scipy", "scipy>=1.11.0"),
|
70 |
-
("einops", "einops>=0.7.0"),
|
71 |
-
("onnxruntime", "onnxruntime>=1.16.0"),
|
72 |
-
("timm", "timm>=0.9.0"),
|
73 |
-
("safetensors", "safetensors>=0.4.0"),
|
74 |
-
("moviepy", "moviepy>=1.0.3"),
|
75 |
-
("imageio", "imageio>=2.30.0"),
|
76 |
-
("tqdm", "tqdm>=4.64.0"),
|
77 |
-
("openai", "openai>=1.5.0"),
|
78 |
-
("psutil", "psutil>=5.9.0")
|
79 |
-
]
|
80 |
-
|
81 |
-
for mod_name, pkg_spec in critical_dependencies:
|
82 |
-
try:
|
83 |
-
if mod_name == "PIL":
|
84 |
-
from PIL import Image
|
85 |
-
elif mod_name == "cv2":
|
86 |
-
import cv2
|
87 |
-
else:
|
88 |
-
__import__(mod_name)
|
89 |
-
print(f"{mod_name} is already installed.")
|
90 |
-
except ImportError:
|
91 |
-
print(f"{mod_name} not found, installing {pkg_spec} ...")
|
92 |
-
install_package(pkg_spec)
|
93 |
-
|
94 |
-
###############################
|
95 |
-
# Environment setup: Clone repository, install custom packages
|
96 |
-
###############################
|
97 |
-
print("Setting up environment...")
|
98 |
-
|
99 |
-
# Clone the VideoPainter repository if not present
|
100 |
-
if not os.path.exists("VideoPainter"):
|
101 |
-
print("Cloning VideoPainter repository...")
|
102 |
-
os.system("git clone https://github.com/TencentARC/VideoPainter.git")
|
103 |
-
|
104 |
-
# Append repository folders to sys.path (if not already)
|
105 |
-
sys.path.append(os.path.join(os.getcwd(), "VideoPainter"))
|
106 |
-
sys.path.append(os.path.join(os.getcwd(), "VideoPainter/app"))
|
107 |
-
sys.path.append(os.path.join(os.getcwd(), "app"))
|
108 |
-
sys.path.append(".")
|
109 |
-
|
110 |
-
# Install the custom diffusers package from VideoPainter/diffusers.
|
111 |
-
if os.path.exists("VideoPainter/diffusers"):
|
112 |
-
print("Installing custom diffusers (editable, no-build-isolation)...")
|
113 |
-
os.system("pip install --no-build-isolation -e VideoPainter/diffusers")
|
114 |
-
|
115 |
-
# Copy VideoPainter/app to local 'app' directory if needed.
|
116 |
-
if not os.path.exists("app"):
|
117 |
-
os.makedirs("app", exist_ok=True)
|
118 |
-
print("Copying VideoPainter/app to local app directory...")
|
119 |
-
os.system("cp -r VideoPainter/app/* app/")
|
120 |
-
|
121 |
-
# Install the app package in editable mode.
|
122 |
-
if os.path.exists("app"):
|
123 |
-
curr_dir = os.getcwd()
|
124 |
-
os.chdir("app")
|
125 |
-
print("Installing app package (editable, no-build-isolation)...")
|
126 |
-
ret = os.system("pip install --no-build-isolation -e .")
|
127 |
-
if ret != 0:
|
128 |
-
print("Warning: Installing the app package failed; continuing by adding 'app' to sys.path.")
|
129 |
-
os.chdir(curr_dir)
|
130 |
-
|
131 |
-
###############################
|
132 |
-
# Import modules – if any critical module is missing, exit.
|
133 |
-
###############################
|
134 |
-
try:
|
135 |
-
print("Importing modules...")
|
136 |
-
import gradio as gr
|
137 |
-
import cv2
|
138 |
-
import numpy as np
|
139 |
-
import scipy
|
140 |
-
import torchvision
|
141 |
-
from PIL import Image
|
142 |
-
from huggingface_hub import snapshot_download
|
143 |
-
from decord import VideoReader
|
144 |
-
from sam2.build_sam import build_sam2_video_predictor
|
145 |
-
from utils import load_model, generate_frames
|
146 |
-
print("Standard and specialized modules imported successfully!")
|
147 |
-
except ImportError as e:
|
148 |
-
print(f"Error importing modules: {e}")
|
149 |
-
sys.exit(1)
|
150 |
-
|
151 |
-
###############################
|
152 |
-
# Validate diffusers installation.
|
153 |
-
###############################
|
154 |
-
try:
|
155 |
-
from diffusers import pipelines # Expect this to work.
|
156 |
-
print("Custom diffusers installation appears complete.")
|
157 |
-
except Exception as e:
|
158 |
-
print("Custom diffusers installation appears broken:")
|
159 |
-
print(e)
|
160 |
-
print("Installing official diffusers package from PyPI (>=0.24.0)...")
|
161 |
-
if install_package("diffusers>=0.24.0 --force-reinstall"):
|
162 |
-
try:
|
163 |
-
from diffusers import pipelines
|
164 |
-
print("Official diffusers package installed successfully.")
|
165 |
-
except Exception as e2:
|
166 |
-
print("Failed to import diffusers even after installing official version.")
|
167 |
-
sys.exit(1)
|
168 |
-
else:
|
169 |
-
sys.exit(1)
|
170 |
-
|
171 |
-
###############################
|
172 |
-
# Begin Application Code (VideoPainter demo)
|
173 |
-
###############################
|
174 |
-
|
175 |
-
def download_models():
|
176 |
-
print("Downloading models from Hugging Face Hub...")
|
177 |
-
models = {
|
178 |
-
"CogVideoX-5b-I2V": "THUDM/CogVideoX-5b-I2V",
|
179 |
-
"VideoPainter": "TencentARC/VideoPainter"
|
180 |
-
}
|
181 |
-
model_paths = {}
|
182 |
-
os.makedirs("ckpt", exist_ok=True)
|
183 |
-
for name, repo_id in models.items():
|
184 |
-
print(f"Downloading {name} from {repo_id}...")
|
185 |
-
path = snapshot_download(repo_id=repo_id)
|
186 |
-
model_paths[name] = path
|
187 |
-
print(f"Downloaded {name} to {path}")
|
188 |
-
try:
|
189 |
-
flux_path = snapshot_download(repo_id="black-forest-labs/FLUX.1-Fill-dev")
|
190 |
-
model_paths["FLUX"] = flux_path
|
191 |
-
except Exception as e:
|
192 |
-
print(f"Failed to download FLUX model: {e}")
|
193 |
-
model_paths["FLUX"] = None
|
194 |
-
os.makedirs("ckpt/Grounded-SAM-2", exist_ok=True)
|
195 |
-
sam2_path = "ckpt/Grounded-SAM-2/sam2_hiera_large.pt"
|
196 |
-
if not os.path.exists(sam2_path):
|
197 |
-
print(f"Downloading SAM2 to {sam2_path}...")
|
198 |
-
os.system(f"wget -O {sam2_path} https://huggingface.co/spaces/sam2/sam2/resolve/main/sam2_hiera_large.pt")
|
199 |
-
model_paths["SAM2"] = sam2_path
|
200 |
-
return model_paths
|
201 |
-
|
202 |
-
print("Initializing application environment...")
|
203 |
-
if not os.path.exists("app"):
|
204 |
-
print("Setting up app folder from VideoPainter repository ...")
|
205 |
-
os.system("git clone https://github.com/TencentARC/VideoPainter.git")
|
206 |
-
os.makedirs("app", exist_ok=True)
|
207 |
-
os.system("cp -r VideoPainter/app/* app/")
|
208 |
-
os.system("pip install --no-build-isolation -e VideoPainter/diffusers")
|
209 |
-
os.chdir("app")
|
210 |
-
os.system("pip install --no-build-isolation -e .")
|
211 |
-
os.chdir("..")
|
212 |
-
|
213 |
-
sys.path.append("app")
|
214 |
-
sys.path.append(".")
|
215 |
-
|
216 |
-
# Import project modules (again, to be safe)
|
217 |
-
try:
|
218 |
-
from decord import VideoReader
|
219 |
-
from sam2.build_sam import build_sam2_video_predictor
|
220 |
-
from utils import load_model, generate_frames
|
221 |
-
except ImportError as e:
|
222 |
-
print(f"Failed to import specialized modules: {e}")
|
223 |
-
sys.exit(1)
|
224 |
-
|
225 |
-
# Set up OpenRouter / OpenAI (for caption generation)
|
226 |
-
try:
|
227 |
-
from openai import OpenAI
|
228 |
-
vlm_model = OpenAI(
|
229 |
-
api_key=os.getenv("OPENROUTER_API_KEY", ""),
|
230 |
-
base_url="https://openrouter.ai/api/v1"
|
231 |
-
)
|
232 |
-
print("OpenRouter client initialized successfully")
|
233 |
-
except Exception as e:
|
234 |
-
print(f"OpenRouter API not available: {e}")
|
235 |
-
class DummyModel:
|
236 |
-
def __getattr__(self, name):
|
237 |
-
return self
|
238 |
-
def __call__(self, *args, **kwargs):
|
239 |
-
return self
|
240 |
-
def create(self, *args, **kwargs):
|
241 |
-
class DummyResponse:
|
242 |
-
choices = [type('obj', (object,), {'message': type('obj', (object,), {'content': "OpenRouter API not available. Using default prompt."})})]
|
243 |
-
return DummyResponse()
|
244 |
-
vlm_model = DummyModel()
|
245 |
-
|
246 |
-
###############################
|
247 |
-
# Download models and initialize predictors
|
248 |
-
###############################
|
249 |
-
model_paths = download_models()
|
250 |
-
base_model_path = model_paths["CogVideoX-5b-I2V"]
|
251 |
-
videopainter_path = model_paths["VideoPainter"]
|
252 |
-
inpainting_branch = os.path.join(videopainter_path, "checkpoints/branch")
|
253 |
-
id_adapter = os.path.join(videopainter_path, "VideoPainterID/checkpoints")
|
254 |
-
img_inpainting_model = model_paths.get("FLUX")
|
255 |
-
sam2_checkpoint = "ckpt/Grounded-SAM-2/sam2_hiera_large.pt"
|
256 |
-
model_cfg = "sam2_hiera_l.yaml"
|
257 |
-
|
258 |
-
try:
|
259 |
-
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
|
260 |
-
print("Build SAM2 predictor done!")
|
261 |
-
validation_pipeline, validation_pipeline_img = load_model(
|
262 |
-
model_path=base_model_path,
|
263 |
-
inpainting_branch=inpainting_branch,
|
264 |
-
id_adapter=id_adapter,
|
265 |
-
img_inpainting_model=img_inpainting_model
|
266 |
-
)
|
267 |
-
print("Load model done!")
|
268 |
-
except Exception as e:
|
269 |
-
print(f"Error initializing models: {e}")
|
270 |
-
sys.exit(1)
|
271 |
-
|
272 |
-
###############################
|
273 |
-
# Helper functions & state definitions
|
274 |
-
###############################
|
275 |
-
EXAMPLES = [
|
276 |
-
[
|
277 |
-
"https://huggingface.co/spaces/TencentARC/VideoPainter/resolve/main/examples/ferry.mp4",
|
278 |
-
"A white ferry with red and blue accents, named 'COLONIA', cruises on a calm river...",
|
279 |
-
"White and red passenger ferry boat labeled 'COLONIA 6' with multiple windows, life buoys, and upper deck seating.",
|
280 |
-
"Positive",
|
281 |
-
"Inpaint",
|
282 |
-
"",
|
283 |
-
42,
|
284 |
-
6.0,
|
285 |
-
16,
|
286 |
-
[[[320, 240]], [1]],
|
287 |
-
],
|
288 |
-
[
|
289 |
-
"https://huggingface.co/spaces/TencentARC/VideoPainter/resolve/main/examples/street.mp4",
|
290 |
-
"A bustling city street at night illuminated by festive lights, a red double-decker bus...",
|
291 |
-
"The rear of a black car with illuminated red tail lights and a visible license plate.",
|
292 |
-
"Positive",
|
293 |
-
"Inpaint",
|
294 |
-
"",
|
295 |
-
42,
|
296 |
-
6.0,
|
297 |
-
16,
|
298 |
-
[[[200, 400]], [1]],
|
299 |
-
],
|
300 |
-
]
|
301 |
-
|
302 |
-
class StatusMessage:
|
303 |
-
INFO = "Info"
|
304 |
-
WARNING = "Warning"
|
305 |
-
ERROR = "Error"
|
306 |
-
SUCCESS = "Success"
|
307 |
-
|
308 |
-
def create_status(message, status_type=StatusMessage.INFO):
|
309 |
-
timestamp = time.strftime("%H:%M:%S")
|
310 |
-
return [("", ""), (f"[{timestamp}]: {message}\n", status_type)]
|
311 |
-
|
312 |
-
def update_status(previous_status, new_message, status_type=StatusMessage.INFO):
|
313 |
-
timestamp = time.strftime("%H:%M:%S")
|
314 |
-
history = previous_status[-3:]
|
315 |
-
history.append((f"[{timestamp}]: {new_message}\n", status_type))
|
316 |
-
return [("", "")] + history
|
317 |
-
|
318 |
-
def init_state(offload_video_to_cpu=False, offload_state_to_cpu=False):
|
319 |
-
inference_state = {}
|
320 |
-
inference_state["images"] = torch.zeros([1, 3, 100, 100])
|
321 |
-
inference_state["num_frames"] = 1
|
322 |
-
inference_state["offload_video_to_cpu"] = offload_video_to_cpu
|
323 |
-
inference_state["offload_state_to_cpu"] = offload_state_to_cpu
|
324 |
-
inference_state["video_height"] = 100
|
325 |
-
inference_state["video_width"] = 100
|
326 |
-
inference_state["device"] = torch.device("cuda")
|
327 |
-
inference_state["storage_device"] = torch.device("cpu") if offload_state_to_cpu else torch.device("cuda")
|
328 |
-
inference_state["point_inputs_per_obj"] = {}
|
329 |
-
inference_state["mask_inputs_per_obj"] = {}
|
330 |
-
inference_state["cached_features"] = {}
|
331 |
-
inference_state["constants"] = {}
|
332 |
-
inference_state["obj_id_to_idx"] = OrderedDict()
|
333 |
-
inference_state["obj_idx_to_id"] = OrderedDict()
|
334 |
-
inference_state["obj_ids"] = []
|
335 |
-
inference_state["output_dict"] = {"cond_frame_outputs": {}, "non_cond_frame_outputs": {}}
|
336 |
-
inference_state["output_dict_per_obj"] = {}
|
337 |
-
inference_state["temp_output_dict_per_obj"] = {}
|
338 |
-
inference_state["consolidated_frame_inds"] = {"cond_frame_outputs": set(), "non_cond_frame_outputs": set()}
|
339 |
-
inference_state["tracking_has_started"] = False
|
340 |
-
inference_state["frames_already_tracked"] = {}
|
341 |
-
inference_state = gr.State(inference_state)
|
342 |
-
return inference_state
|
343 |
-
|
344 |
-
# (All additional helper functions such as get_frames_from_video, sam_refine, vos_tracking_video,
|
345 |
-
# inpaint_video, generate_video_from_frames, process_example, reset_all, etc. are defined below.)
|
346 |
-
# For brevity, they are included here in full as in your original code.
|
347 |
-
|
348 |
-
def get_frames_from_video(video_input, video_state):
|
349 |
-
video_path = video_input
|
350 |
-
frames = []
|
351 |
-
user_name = time.time()
|
352 |
-
vr = VideoReader(video_path)
|
353 |
-
original_fps = vr.get_avg_fps()
|
354 |
-
if original_fps > 8:
|
355 |
-
total_frames = len(vr)
|
356 |
-
sample_interval = max(1, int(original_fps / 8))
|
357 |
-
frame_indices = list(range(0, total_frames, sample_interval))
|
358 |
-
frames = vr.get_batch(frame_indices).asnumpy()
|
359 |
-
else:
|
360 |
-
frames = vr.get_batch(list(range(len(vr)))).asnumpy()
|
361 |
-
frames = frames[:49]
|
362 |
-
resized_frames = [cv2.resize(frame, (720, 480)) for frame in frames]
|
363 |
-
frames = np.array(resized_frames)
|
364 |
-
init_start = time.time()
|
365 |
-
inference_state = predictor.init_state(images=frames, offload_video_to_cpu=True, async_loading_frames=True)
|
366 |
-
init_time = time.time() - init_start
|
367 |
-
print(f"Inference state initialization took {init_time:.2f}s")
|
368 |
-
fps = 8
|
369 |
-
image_size = (frames[0].shape[0], frames[0].shape[1])
|
370 |
-
video_state = {
|
371 |
-
"user_name": user_name,
|
372 |
-
"video_name": os.path.split(video_path)[-1],
|
373 |
-
"origin_images": frames,
|
374 |
-
"painted_images": frames.copy(),
|
375 |
-
"masks": [np.zeros((frames[0].shape[0], frames[0].shape[1]), np.uint8)] * len(frames),
|
376 |
-
"logits": [None] * len(frames),
|
377 |
-
"select_frame_number": 0,
|
378 |
-
"fps": fps,
|
379 |
-
"ann_obj_id": 0
|
380 |
-
}
|
381 |
-
video_info = f"Video Name: {video_state['video_name']}, FPS: {video_state['fps']}, Total Frames: {len(frames)}, Image Size: {image_size}"
|
382 |
-
video_input_path = generate_video_from_frames(frames, output_path=f"{GRADIO_TEMP_DIR}/inpaint/original_{video_state['video_name']}", fps=fps)
|
383 |
-
return (gr.update(visible=True), gr.update(visible=True), inference_state, video_state, video_info,
|
384 |
-
video_state["origin_images"][0], gr.update(visible=False, maximum=len(frames), value=1, interactive=True),
|
385 |
-
gr.update(visible=False, maximum=len(frames), value=len(frames), interactive=True), gr.update(visible=True, interactive=True),
|
386 |
-
gr.update(visible=True, interactive=True), gr.update(visible=True, interactive=True), gr.update(visible=True),
|
387 |
-
gr.update(visible=True, interactive=False), create_status("Upload video complete. Ready to select targets.", StatusMessage.SUCCESS), video_input_path)
|
388 |
-
|
389 |
-
def select_template(image_selection_slider, video_state, interactive_state, previous_status):
|
390 |
-
image_selection_slider -= 1
|
391 |
-
video_state["select_frame_number"] = image_selection_slider
|
392 |
-
return video_state["painted_images"][image_selection_slider], video_state, interactive_state, update_status(previous_status, f"Set tracking start at frame {image_selection_slider}.", StatusMessage.INFO)
|
393 |
-
|
394 |
-
def get_end_number(track_pause_number_slider, video_state, interactive_state, previous_status):
|
395 |
-
interactive_state["track_end_number"] = track_pause_number_slider
|
396 |
-
return video_state["painted_images"][track_pause_number_slider], interactive_state, update_status(previous_status, f"Set tracking finish at frame {track_pause_number_slider}.", StatusMessage.INFO)
|
397 |
-
|
398 |
-
def sam_refine(inference_state, video_state, point_prompt, click_state, interactive_state, evt, previous_status):
|
399 |
-
ann_obj_id = 0
|
400 |
-
ann_frame_idx = video_state["select_frame_number"]
|
401 |
-
if point_prompt == "Positive":
|
402 |
-
coordinate = f"[[{evt.index[0]},{evt.index[1]},1]]"
|
403 |
-
interactive_state["positive_click_times"] += 1
|
404 |
-
else:
|
405 |
-
coordinate = f"[[{evt.index[0]},{evt.index[1]},0]]"
|
406 |
-
interactive_state["negative_click_times"] += 1
|
407 |
-
print(f"sam_refine, point_prompt: {point_prompt}, click_state: {click_state}")
|
408 |
-
prompt = {"prompt_type":["click"], "input_point": click_state[0], "input_label": click_state[1], "multimask_output": "True"}
|
409 |
-
points = np.array(prompt["input_point"])
|
410 |
-
labels = np.array(prompt["input_label"])
|
411 |
-
height, width = video_state["origin_images"][0].shape[0:2]
|
412 |
-
for i in range(len(points)):
|
413 |
-
points[i, 0] = int(points[i, 0])
|
414 |
-
points[i, 1] = int(points[i, 1])
|
415 |
-
print(f"sam_refine points: {points}, labels: {labels}")
|
416 |
-
frame_idx, obj_ids, mask = predictor.add_new_points(inference_state=inference_state, frame_idx=ann_frame_idx, obj_id=ann_obj_id, points=points, labels=labels)
|
417 |
-
mask_ = mask.cpu().squeeze().detach().numpy()
|
418 |
-
mask_[mask_ <= 0] = 0
|
419 |
-
mask_[mask_ > 0] = 1
|
420 |
-
org_image = video_state["origin_images"][video_state["select_frame_number"]]
|
421 |
-
mask_ = cv2.resize(mask_, (width, height))
|
422 |
-
mask_ = mask_[:, :, None]
|
423 |
-
mask_[mask_ > 0.5] = 1
|
424 |
-
mask_[mask_ <= 0.5] = 0
|
425 |
-
color = 63 * np.ones((height, width, 3)) * np.array([[[np.random.randint(5), np.random.randint(5), np.random.randint(5)]]])
|
426 |
-
painted_image = np.uint8((1 - 0.5 * mask_) * org_image + 0.5 * mask_ * color)
|
427 |
-
video_state["masks"][video_state["select_frame_number"]] = mask_
|
428 |
-
video_state["painted_images"][video_state["select_frame_number"]] = painted_image
|
429 |
-
return painted_image, video_state, interactive_state, update_status(previous_status, "Segmentation updated. Add more points or continue tracking.", StatusMessage.SUCCESS)
|
430 |
-
|
431 |
-
def clear_click(inference_state, video_state, click_state, previous_status):
|
432 |
-
predictor.reset_state(inference_state)
|
433 |
-
click_state = [[], []]
|
434 |
-
template_frame = video_state["origin_images"][video_state["select_frame_number"]]
|
435 |
-
return inference_state, template_frame, click_state, update_status(previous_status, "Click history cleared.", StatusMessage.INFO)
|
436 |
-
|
437 |
-
def vos_tracking_video(inference_state, video_state, interactive_state, previous_status):
|
438 |
-
height, width = video_state["origin_images"][0].shape[0:2]
|
439 |
-
masks = []
|
440 |
-
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state):
|
441 |
-
mask = np.zeros([480, 720, 1])
|
442 |
-
for i in range(len(out_mask_logits)):
|
443 |
-
out_mask = out_mask_logits[i].cpu().squeeze().detach().numpy()
|
444 |
-
out_mask[out_mask > 0] = 1
|
445 |
-
out_mask[out_mask <= 0] = 0
|
446 |
-
out_mask = out_mask[:, :, None]
|
447 |
-
mask += out_mask
|
448 |
-
mask = cv2.resize(mask, (width, height))
|
449 |
-
mask = mask[:, :, None]
|
450 |
-
mask[mask > 0.5] = 1
|
451 |
-
mask[mask < 1] = 0
|
452 |
-
mask = scipy.ndimage.binary_dilation(mask, iterations=6)
|
453 |
-
masks.append(mask)
|
454 |
-
masks = np.array(masks)
|
455 |
-
if interactive_state.get("track_end_number") is not None:
|
456 |
-
video_state["masks"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = masks
|
457 |
-
org_images = video_state["origin_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]]
|
458 |
-
color = 255 * np.ones((1, org_images.shape[-3], org_images.shape[-2], 3)) * np.array([[[[0, 1, 1]]]])
|
459 |
-
painted_images = np.uint8((1 - 0.5 * masks) * org_images + 0.5 * masks * color)
|
460 |
-
video_state["painted_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = painted_images
|
461 |
-
else:
|
462 |
-
video_state["masks"] = masks
|
463 |
-
org_images = video_state["origin_images"]
|
464 |
-
color = 255 * np.ones((1, org_images.shape[-3], org_images.shape[-2], 3)) * np.array([[[[0, 1, 1]]]])
|
465 |
-
painted_images = np.uint8((1 - 0.5 * masks) * org_images + 0.5 * masks * color)
|
466 |
-
video_state["painted_images"] = painted_images
|
467 |
-
video_output = generate_video_from_frames(video_state["painted_images"], output_path=f"{GRADIO_TEMP_DIR}/track/{video_state['video_name']}", fps=video_state["fps"])
|
468 |
-
interactive_state["inference_times"] += 1
|
469 |
-
print(f"vos_tracking_video output: {video_output}")
|
470 |
-
return inference_state, video_output, video_state, interactive_state, update_status(previous_status, "Tracking complete.", StatusMessage.SUCCESS), gr.Button.update(interactive=True), gr.Button.update(interactive=True), gr.Button.update(interactive=True), gr.Button.update(interactive=True)
|
471 |
-
|
472 |
-
def inpaint_video(video_state, video_caption, target_region_frame1_caption, interactive_state, previous_status, seed_param, cfg_scale, dilate_size):
|
473 |
-
seed = int(seed_param) if int(seed_param) >= 0 else np.random.randint(0, 2**32 - 1)
|
474 |
-
validation_images = video_state["origin_images"]
|
475 |
-
validation_masks = video_state["masks"]
|
476 |
-
validation_masks = [np.squeeze(mask) for mask in validation_masks]
|
477 |
-
validation_masks = [(mask > 0).astype(np.uint8) * 255 for mask in validation_masks]
|
478 |
-
validation_masks = [np.stack([m, m, m], axis=-1) for m in validation_masks]
|
479 |
-
validation_images = [Image.fromarray(np.uint8(img)).convert('RGB') for img in validation_images]
|
480 |
-
validation_masks = [Image.fromarray(np.uint8(mask)).convert('RGB') for mask in validation_masks]
|
481 |
-
validation_images = [img.resize((720, 480)) for img in validation_images]
|
482 |
-
validation_masks = [mask.resize((720, 480)) for mask in validation_masks]
|
483 |
-
print("Inpainting: video_caption=", video_caption)
|
484 |
-
images = generate_frames(
|
485 |
-
images=validation_images,
|
486 |
-
masks=validation_masks,
|
487 |
-
pipe=validation_pipeline,
|
488 |
-
pipe_img_inpainting=validation_pipeline_img,
|
489 |
-
prompt=str(video_caption),
|
490 |
-
image_inpainting_prompt=str(target_region_frame1_caption),
|
491 |
-
seed=seed,
|
492 |
-
cfg_scale=float(cfg_scale),
|
493 |
-
dilate_size=int(dilate_size)
|
494 |
-
)
|
495 |
-
images = (images * 255).astype(np.uint8)
|
496 |
-
video_output = generate_video_from_frames(images, output_path=f"{GRADIO_TEMP_DIR}/inpaint/{video_state['video_name']}", fps=8)
|
497 |
-
print(f"Inpaint_video output: {video_output}")
|
498 |
-
return video_output, update_status(previous_status, "Inpainting complete.", StatusMessage.SUCCESS)
|
499 |
-
|
500 |
-
def generate_video_from_frames(frames, output_path, fps=8):
|
501 |
-
frames_tensor = torch.from_numpy(np.asarray(frames)).to(torch.uint8)
|
502 |
-
if not os.path.exists(os.path.dirname(output_path)):
|
503 |
-
os.makedirs(os.path.dirname(output_path))
|
504 |
-
torchvision.io.write_video(output_path, frames_tensor, fps=fps, video_codec="libx264")
|
505 |
-
return output_path
|
506 |
-
|
507 |
-
def process_example(video_input, video_caption, target_region_frame1_caption, prompt, click_state):
|
508 |
-
if video_input is None or video_input == "":
|
509 |
-
return (gr.update(value=""), gr.update(value=""), init_state(),
|
510 |
-
{"user_name": "", "video_name": "", "origin_images": None, "painted_images": None, "masks": None, "inpaint_masks": None, "logits": None, "select_frame_number": 0, "fps": 8, "ann_obj_id": 0},
|
511 |
-
"", None,
|
512 |
-
gr.update(value=1, visible=False, interactive=False),
|
513 |
-
gr.update(value=1, visible=False, interactive=False),
|
514 |
-
gr.update(value="Positive", interactive=False),
|
515 |
-
gr.update(visible=True, interactive=False),
|
516 |
-
gr.update(visible=True, interactive=False),
|
517 |
-
gr.update(value=None),
|
518 |
-
gr.update(visible=True, interactive=False),
|
519 |
-
create_status("Reset complete. Ready for new input.", StatusMessage.INFO),
|
520 |
-
gr.update(value=None))
|
521 |
-
video_state = gr.State({
|
522 |
-
"user_name": "",
|
523 |
-
"video_name": "",
|
524 |
-
"origin_images": None,
|
525 |
-
"painted_images": None,
|
526 |
-
"masks": None,
|
527 |
-
"inpaint_masks": None,
|
528 |
-
"logits": None,
|
529 |
-
"select_frame_number": 0,
|
530 |
-
"fps": 8,
|
531 |
-
"ann_obj_id": 0
|
532 |
-
})
|
533 |
-
results = get_frames_from_video(video_input, video_state)
|
534 |
-
if click_state[0] and click_state[1]:
|
535 |
-
print("Example detected, executing sam_refine")
|
536 |
-
(video_caption, target_region_frame1_caption, inference_state, video_state, video_info, template_frame, image_selection_slider, track_pause_number_slider, point_prompt, clear_button, tracking_button, video_output, inpaint_button, run_status, video_input) = results
|
537 |
-
class MockEvent:
|
538 |
-
def __init__(self, points, point_idx=0):
|
539 |
-
self.index = points[point_idx]
|
540 |
-
for i_click in range(len(click_state[0])):
|
541 |
-
evt = MockEvent(click_state[0], i_click)
|
542 |
-
prompt_type = "Positive" if click_state[1][i_click] == 1 else "Negative"
|
543 |
-
template_frame, video_state, interactive_state, run_status = sam_refine(inference_state, video_state, prompt_type, click_state, {"inference_times": 0, "negative_click_times": 0, "positive_click_times": 0, "mask_save": False, "multi_mask": {"mask_names": [], "masks": []}, "track_end_number": None}, evt, run_status)
|
544 |
-
return (video_caption, target_region_frame1_caption, inference_state, video_state, video_info, template_frame, image_selection_slider, track_pause_number_slider, point_prompt, clear_button, tracking_button, video_output, inpaint_button, run_status, video_input)
|
545 |
-
return results
|
546 |
-
|
547 |
-
def reset_all():
|
548 |
-
return (gr.update(value=None), gr.update(value=""), gr.update(value=""), init_state(),
|
549 |
-
{"user_name": "", "video_name": "", "origin_images": None, "painted_images": None, "masks": None, "inpaint_masks": None, "logits": None, "select_frame_number": 0, "fps": 8, "ann_obj_id": 0},
|
550 |
-
{"inference_times": 0, "negative_click_times": 0, "positive_click_times": 0, "mask_save": False, "multi_mask": {"mask_names": [], "masks": []}, "track_end_number": None},
|
551 |
-
[[], []], None, gr.update(visible=True, interactive=True), "",
|
552 |
-
gr.update(value=1, visible=False, interactive=False), gr.update(value=1, visible=False, interactive=False),
|
553 |
-
gr.update(value="Positive", interactive=False), gr.Button.update(interactive=False),
|
554 |
-
gr.Button.update(interactive=False), gr.Button.update(interactive=False),
|
555 |
-
gr.Button.update(interactive=False), gr.Button.update(interactive=False),
|
556 |
-
gr.Button.update(interactive=False), gr.Number.update(value=42),
|
557 |
-
gr.Slider.update(value=6.0), gr.Slider.update(value=16),
|
558 |
-
create_status("Reset complete. Ready for new input.", StatusMessage.INFO))
|
559 |
-
|
560 |
-
###############################
|
561 |
-
# Build Gradio Interface
|
562 |
-
###############################
|
563 |
-
title = """<p><h1 align="center">VideoPainter</h1></p>"""
|
564 |
-
with gr.Blocks() as iface:
|
565 |
-
gr.HTML("""
|
566 |
-
<div style="text-align: center;">
|
567 |
-
<h1 style="color: #333;">🖌️ VideoPainter</h1>
|
568 |
-
<h3 style="color: #333;">Any-length Video Inpainting and Editing with Plug-and-Play Context Control</h3>
|
569 |
-
<p style="font-weight: bold;">
|
570 |
-
<a href="https://yxbian23.github.io/project/video-painter/">🌍 Project Page</a> |
|
571 |
-
<a href="https://arxiv.org/abs/2503.05639">📃 ArXiv Preprint</a> |
|
572 |
-
<a href="https://github.com/TencentARC/VideoPainter">🧑💻 Github Repository</a>
|
573 |
-
</p>
|
574 |
-
</div>
|
575 |
-
""")
|
576 |
-
click_state = gr.State([[], []])
|
577 |
-
interactive_state = gr.State({
|
578 |
-
"inference_times": 0,
|
579 |
-
"negative_click_times": 0,
|
580 |
-
"positive_click_times": 0,
|
581 |
-
"mask_save": False,
|
582 |
-
"multi_mask": {"mask_names": [], "masks": []},
|
583 |
-
"track_end_number": None,
|
584 |
-
})
|
585 |
-
video_state = gr.State({
|
586 |
-
"user_name": "",
|
587 |
-
"video_name": "",
|
588 |
-
"origin_images": None,
|
589 |
-
"painted_images": None,
|
590 |
-
"masks": None,
|
591 |
-
"inpaint_masks": None,
|
592 |
-
"logits": None,
|
593 |
-
"select_frame_number": 0,
|
594 |
-
"fps": 8,
|
595 |
-
"ann_obj_id": 0
|
596 |
-
})
|
597 |
-
inference_state = init_state()
|
598 |
-
|
599 |
-
with gr.Row():
|
600 |
-
with gr.Column():
|
601 |
-
with gr.Row():
|
602 |
-
video_input = gr.Video(label="Original Video", visible=True)
|
603 |
-
with gr.Row():
|
604 |
-
with gr.Column(scale=3):
|
605 |
-
template_frame = gr.Image(type="pil", interactive=True, elem_id="template_frame", visible=True)
|
606 |
-
with gr.Column(scale=1):
|
607 |
-
with gr.Accordion("Segmentation Point Prompt", open=True):
|
608 |
-
point_prompt = gr.Radio(choices=["Positive", "Negative"], value="Positive", label="Point Type", interactive=False, visible=True)
|
609 |
-
clear_button_click = gr.Button(value="Clear clicks", interactive=False, visible=True)
|
610 |
-
gr.Markdown("✨ Positive: Include target region. <br> ✨ Negative: Exclude target region.")
|
611 |
-
image_selection_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Track start frame", visible=False, interactive=False)
|
612 |
-
track_pause_number_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Track end frame", visible=False, interactive=False)
|
613 |
-
video_output = gr.Video(label="Generated Video", visible=True)
|
614 |
-
with gr.Row():
|
615 |
-
tracking_video_predict_button = gr.Button(value="Tracking", interactive=False, visible=True)
|
616 |
-
inpaint_video_predict_button = gr.Button(value="Inpainting", interactive=False, visible=True)
|
617 |
-
reset_button = gr.Button(value="Reset All", interactive=True, visible=True)
|
618 |
-
|
619 |
-
with gr.Column():
|
620 |
-
with gr.Accordion("Global Video Caption", open=True):
|
621 |
-
video_caption = gr.Textbox(label="Global Video Caption", placeholder="Input global video caption...", interactive=True, visible=True, max_lines=5, show_copy_button=True)
|
622 |
-
with gr.Row():
|
623 |
-
gr.Markdown("✨ Enhance prompt using GPT-4o (optional).")
|
624 |
-
enhance_button = gr.Button("✨ Enhance Prompt(Optional)", interactive=False)
|
625 |
-
with gr.Accordion("Target Object Caption", open=True):
|
626 |
-
target_region_frame1_caption = gr.Textbox(label="Target Object Caption", placeholder="Input target object caption...", interactive=True, visible=True, max_lines=5, show_copy_button=True)
|
627 |
-
with gr.Row():
|
628 |
-
gr.Markdown("✨ Generate target caption (optional).")
|
629 |
-
enhance_target_region_frame1_button = gr.Button("✨ Target Prompt Generation (Optional)", interactive=False)
|
630 |
-
with gr.Accordion("Editing Instruction", open=False):
|
631 |
-
gr.Markdown("✨ Modify captions based on your instruction using GPT-4o.")
|
632 |
-
with gr.Row():
|
633 |
-
editing_instruction = gr.Textbox(label="Editing Instruction", placeholder="Input editing instruction...", interactive=True, visible=True, max_lines=5, show_copy_button=True)
|
634 |
-
enhance_editing_instruction_button = gr.Button("✨ Modify Caption(For Editing)", interactive=False)
|
635 |
-
with gr.Accordion("Advanced Sampling Settings", open=False):
|
636 |
-
cfg_scale = gr.Slider(value=6.0, label="Classifier-Free Guidance Scale", minimum=1, maximum=10, step=0.1, interactive=True)
|
637 |
-
seed_param = gr.Number(label="Inference Seed (>=0)", interactive=True, value=42)
|
638 |
-
dilate_size = gr.Slider(value=16, label="Mask Dilate Size", minimum=0, maximum=32, step=1, interactive=True)
|
639 |
-
video_info = gr.Textbox(label="Video Info", visible=True, interactive=False)
|
640 |
-
model_type = gr.Textbox(label="Type", placeholder="Model type...", interactive=True, visible=False)
|
641 |
-
notes_accordion = gr.Accordion("Notes", open=False)
|
642 |
-
with notes_accordion:
|
643 |
-
gr.HTML("<p style='font-size: 1.1em;'>🧐 Reminder: VideoPainter may produce unexpected outputs. Adjust settings if needed.</p>")
|
644 |
-
run_status = gr.HighlightedText(value=[("", "")], visible=True, label="Operation Status", show_label=True,
|
645 |
-
color_map={"Success": "green", "Error": "red", "Warning": "orange", "Info": "blue"})
|
646 |
-
|
647 |
-
with gr.Row():
|
648 |
-
examples = gr.Examples(label="Quick Examples", examples=EXAMPLES,
|
649 |
-
inputs=[video_input, video_caption, target_region_frame1_caption, point_prompt, model_type, editing_instruction, seed_param, cfg_scale, dilate_size, click_state],
|
650 |
-
examples_per_page=20, cache_examples=False)
|
651 |
-
|
652 |
-
video_input.change(fn=process_example, inputs=[video_input, video_caption, target_region_frame1_caption, point_prompt, click_state],
|
653 |
-
outputs=[video_caption, target_region_frame1_caption, inference_state, video_state, video_info,
|
654 |
-
template_frame, image_selection_slider, track_pause_number_slider, point_prompt, clear_button_click,
|
655 |
-
tracking_video_predict_button, video_output, inpaint_video_predict_button, run_status, video_input])
|
656 |
-
|
657 |
-
image_selection_slider.release(fn=select_template, inputs=[image_selection_slider, video_state, interactive_state, run_status],
|
658 |
-
outputs=[template_frame, video_state, interactive_state, run_status])
|
659 |
-
|
660 |
-
track_pause_number_slider.release(fn=get_end_number, inputs=[track_pause_number_slider, video_state, interactive_state, run_status],
|
661 |
-
outputs=[template_frame, interactive_state, run_status])
|
662 |
-
|
663 |
-
template_frame.select(fn=sam_refine, inputs=[inference_state, video_state, point_prompt, click_state, interactive_state, run_status],
|
664 |
-
outputs=[template_frame, video_state, interactive_state, run_status])
|
665 |
-
|
666 |
-
tracking_video_predict_button.click(fn=vos_tracking_video, inputs=[inference_state, video_state, interactive_state, run_status],
|
667 |
-
outputs=[inference_state, video_output, video_state, interactive_state, run_status,
|
668 |
-
inpaint_video_predict_button, enhance_button, enhance_target_region_frame1_button, enhance_editing_instruction_button, notes_accordion])
|
669 |
-
|
670 |
-
inpaint_video_predict_button.click(fn=inpaint_video, inputs=[video_state, video_caption, target_region_frame1_caption, interactive_state, run_status, seed_param, cfg_scale, dilate_size],
|
671 |
-
outputs=[video_output, run_status], api_name=False, show_progress="full")
|
672 |
-
|
673 |
-
def enhance_prompt_func(video_caption):
|
674 |
-
return video_caption # Replace with your convert_prompt() if available
|
675 |
-
|
676 |
-
def enhance_target_region_frame1_prompt_func(target_region_frame1_caption, video_state):
|
677 |
-
return target_region_frame1_caption # Replace with your convert_prompt_target_region_frame1() if available
|
678 |
-
|
679 |
-
def enhance_editing_instruction_prompt_func(editing_instruction, video_caption, target_region_frame1_caption, video_state):
|
680 |
-
return video_caption, target_region_frame1_caption # Replace with your convert_prompt_editing_instruction() if available
|
681 |
-
|
682 |
-
enhance_button.click(enhance_prompt_func, inputs=[video_caption], outputs=[video_caption])
|
683 |
-
enhance_target_region_frame1_button.click(enhance_target_region_frame1_prompt_func, inputs=[target_region_frame1_caption, video_state], outputs=[target_region_frame1_caption])
|
684 |
-
enhance_editing_instruction_button.click(enhance_editing_instruction_prompt_func, inputs=[editing_instruction, video_caption, target_region_frame1_caption, video_state],
|
685 |
-
outputs=[video_caption, target_region_frame1_caption])
|
686 |
-
|
687 |
-
video_input.clear(fn=lambda: (gr.update(visible=True), gr.update(visible=True), init_state(),
|
688 |
-
{"user_name": "", "video_name": "", "origin_images": None, "painted_images": None, "masks": None, "inpaint_masks": None, "logits": None, "select_frame_number": 0, "fps": 8, "ann_obj_id": 0},
|
689 |
-
{"inference_times": 0, "negative_click_times": 0, "positive_click_times": 0, "mask_save": False, "multi_mask": {"mask_names": [], "masks": []}, "track_end_number": 0},
|
690 |
-
[[], []], None, None,
|
691 |
-
gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True),
|
692 |
-
gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True, value=[]),
|
693 |
-
gr.update(visible=True), gr.update(visible=True), gr.update(visible=True),
|
694 |
-
gr.Button.update(interactive=False), gr.Button.update(interactive=False), gr.Button.update(interactive=False)),
|
695 |
-
outputs=[video_caption, target_region_frame1_caption, inference_state, video_state, interactive_state, click_state, video_output, template_frame, tracking_video_predict_button, image_selection_slider, track_pause_number_slider, point_prompt, clear_button_click, template_frame, tracking_video_predict_button, video_output, inpaint_video_predict_button, run_status], queue=False, show_progress=False)
|
696 |
-
|
697 |
-
clear_button_click.click(fn=clear_click, inputs=[inference_state, video_state, click_state, run_status],
|
698 |
-
outputs=[inference_state, template_frame, click_state, run_status])
|
699 |
-
|
700 |
-
reset_button.click(fn=reset_all, inputs=[], outputs=[video_input, video_caption, target_region_frame1_caption, inference_state, video_state, interactive_state, click_state, video_output, template_frame, video_info, image_selection_slider, track_pause_number_slider, point_prompt, clear_button_click, tracking_video_predict_button, inpaint_video_predict_button, enhance_button, enhance_target_region_frame1_button, enhance_editing_instruction_button, seed_param, cfg_scale, dilate_size, run_status])
|
701 |
-
|
702 |
-
iface.queue().launch(share=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|