File size: 36,778 Bytes
36ceac3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8a4c74f3-8f39-4396-afc6-036cfede2649",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import json\n",
    "import openai\n",
    "\n",
    "# Initialize the OpenAI client\n",
    "client = openai.OpenAI(api_key=\"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\")\n",
    "\n",
    "# Define the prompt for hotel review analysis\n",
    "prompt = \"Analyzing hotel reviews to identify strengths and weaknesses. Please provide only the weaknesses and strengths.\\n\"\n",
    "\n",
    "# Define the base directory path\n",
    "base_dir = r\"D:\\21761A4230\\preproced hotel data\"\n",
    "\n",
    "# Define the output file path\n",
    "output_file = \"strengths_weaknesses.txt\"\n",
    "\n",
    "# Open the output file in append mode\n",
    "with open(output_file, \"a\") as f_out:\n",
    "    # Iterate through each subdirectory (hotel) in the base directory\n",
    "    for hotel_dir in os.listdir(base_dir):\n",
    "        hotel_path = os.path.join(base_dir, hotel_dir)\n",
    "        \n",
    "        # Iterate through each cluster file in the hotel directory\n",
    "        for cluster_file in os.listdir(hotel_path):\n",
    "            if cluster_file.endswith(\".json\"):\n",
    "                cluster_path = os.path.join(hotel_path, cluster_file)\n",
    "                \n",
    "                # Load the keywords from the cluster file\n",
    "                with open(cluster_path, \"r\") as f:\n",
    "                    cluster_data = json.load(f)\n",
    "                    keywords = cluster_data[\"hotels\"]\n",
    "                \n",
    "                # Analyze the keywords using OpenAI\n",
    "                response = client.chat.completions.create(\n",
    "                    model=\"gpt-3.5-turbo\",\n",
    "                    messages=[\n",
    "                        {\n",
    "                            \"role\": \"user\",\n",
    "                            \"content\": f\"{prompt}Keywords: {keywords}\"\n",
    "                        }\n",
    "                    ],\n",
    "                    temperature=1,\n",
    "                    max_tokens=256,\n",
    "                    top_p=1,\n",
    "                    frequency_penalty=0,\n",
    "                    presence_penalty=0\n",
    "                )\n",
    "                \n",
    "                # Write the hotel, cluster, keywords, and OpenAI response to the output file\n",
    "                f_out.write(f\"Hotel: {hotel_dir}, Cluster: {cluster_file}\\n\")\n",
    "                f_out.write(f\"Keywords: {keywords}\\n\")\n",
    "                f_out.write(f\"OpenAI Response:\\n{response.choices[0].message.content}\\n\\n\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "66dedbfb-7663-4a23-beec-16f400ae07f3",
   "metadata": {},
   "outputs": [
    {
     "ename": "RateLimitError",
     "evalue": "Error code: 429 - {'error': {'message': 'You exceeded your current quota, please check your plan and billing details. For more information on this error, read the docs: https://platform.openai.com/docs/guides/error-codes/api-errors.', 'type': 'insufficient_quota', 'param': None, 'code': 'insufficient_quota'}}",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mRateLimitError\u001b[0m                            Traceback (most recent call last)",
      "Cell \u001b[1;32mIn[16], line 31\u001b[0m\n\u001b[0;32m     28\u001b[0m     keywords \u001b[38;5;241m=\u001b[39m cluster_data[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhotels\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[0;32m     30\u001b[0m \u001b[38;5;66;03m# Analyze the keywords using OpenAI\u001b[39;00m\n\u001b[1;32m---> 31\u001b[0m response \u001b[38;5;241m=\u001b[39m \u001b[43mclient\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mchat\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcompletions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m     32\u001b[0m \u001b[43m    \u001b[49m\u001b[43mmodel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mgpt-3.5-turbo\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m     33\u001b[0m \u001b[43m    \u001b[49m\u001b[43mmessages\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\n\u001b[0;32m     34\u001b[0m \u001b[43m        \u001b[49m\u001b[43m{\u001b[49m\n\u001b[0;32m     35\u001b[0m \u001b[43m            \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mrole\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43muser\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m     36\u001b[0m \u001b[43m            \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcontent\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mprompt\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43mKeywords: \u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mkeywords\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m\"\u001b[39;49m\n\u001b[0;32m     37\u001b[0m \u001b[43m        \u001b[49m\u001b[43m}\u001b[49m\n\u001b[0;32m     38\u001b[0m \u001b[43m    \u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m     39\u001b[0m \u001b[43m    \u001b[49m\u001b[43mtemperature\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m     40\u001b[0m \u001b[43m    \u001b[49m\u001b[43mmax_tokens\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m256\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m     41\u001b[0m \u001b[43m    \u001b[49m\u001b[43mtop_p\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m     42\u001b[0m \u001b[43m    \u001b[49m\u001b[43mfrequency_penalty\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m     43\u001b[0m \u001b[43m    \u001b[49m\u001b[43mpresence_penalty\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m0\u001b[39;49m\n\u001b[0;32m     44\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m     46\u001b[0m \u001b[38;5;66;03m# Write the OpenAI response to the output file\u001b[39;00m\n\u001b[0;32m     47\u001b[0m \u001b[38;5;66;03m#f_out.write(f\"Cluster: {cluster_file}\\n\")\u001b[39;00m\n\u001b[0;32m     48\u001b[0m \u001b[38;5;66;03m#f_out.write(f\"Keywords: {keywords}\\n\")\u001b[39;00m\n\u001b[0;32m     49\u001b[0m f_out\u001b[38;5;241m.\u001b[39mwrite(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mOpenAI Response:\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00mresponse\u001b[38;5;241m.\u001b[39mchoices[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;241m.\u001b[39mmessage\u001b[38;5;241m.\u001b[39mcontent\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n",
      "File \u001b[1;32mD:\\21761A4230\\venv\\Lib\\site-packages\\openai\\_utils\\_utils.py:275\u001b[0m, in \u001b[0;36mrequired_args.<locals>.inner.<locals>.wrapper\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m    273\u001b[0m             msg \u001b[38;5;241m=\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMissing required argument: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mquote(missing[\u001b[38;5;241m0\u001b[39m])\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m    274\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(msg)\n\u001b[1;32m--> 275\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[1;32mD:\\21761A4230\\venv\\Lib\\site-packages\\openai\\resources\\chat\\completions.py:667\u001b[0m, in \u001b[0;36mCompletions.create\u001b[1;34m(self, messages, model, frequency_penalty, function_call, functions, logit_bias, logprobs, max_tokens, n, presence_penalty, response_format, seed, stop, stream, temperature, tool_choice, tools, top_logprobs, top_p, user, extra_headers, extra_query, extra_body, timeout)\u001b[0m\n\u001b[0;32m    615\u001b[0m \u001b[38;5;129m@required_args\u001b[39m([\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmessages\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmodel\u001b[39m\u001b[38;5;124m\"\u001b[39m], [\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmessages\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmodel\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mstream\u001b[39m\u001b[38;5;124m\"\u001b[39m])\n\u001b[0;32m    616\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcreate\u001b[39m(\n\u001b[0;32m    617\u001b[0m     \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m   (...)\u001b[0m\n\u001b[0;32m    665\u001b[0m     timeout: \u001b[38;5;28mfloat\u001b[39m \u001b[38;5;241m|\u001b[39m httpx\u001b[38;5;241m.\u001b[39mTimeout \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m|\u001b[39m NotGiven \u001b[38;5;241m=\u001b[39m NOT_GIVEN,\n\u001b[0;32m    666\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m ChatCompletion \u001b[38;5;241m|\u001b[39m Stream[ChatCompletionChunk]:\n\u001b[1;32m--> 667\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_post\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m    668\u001b[0m \u001b[43m        \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m/chat/completions\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m    669\u001b[0m \u001b[43m        \u001b[49m\u001b[43mbody\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmaybe_transform\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m    670\u001b[0m \u001b[43m            \u001b[49m\u001b[43m{\u001b[49m\n\u001b[0;32m    671\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmessages\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmessages\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    672\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmodel\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    673\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfrequency_penalty\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mfrequency_penalty\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    674\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfunction_call\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mfunction_call\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    675\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mfunctions\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mfunctions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    676\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mlogit_bias\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mlogit_bias\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    677\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mlogprobs\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mlogprobs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    678\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmax_tokens\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mmax_tokens\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    679\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mn\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mn\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    680\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mpresence_penalty\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mpresence_penalty\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    681\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mresponse_format\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mresponse_format\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    682\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mseed\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mseed\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    683\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstop\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mstop\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    684\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstream\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    685\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtemperature\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtemperature\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    686\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtool_choice\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtool_choice\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    687\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtools\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtools\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    688\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtop_logprobs\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtop_logprobs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    689\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mtop_p\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43mtop_p\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    690\u001b[0m \u001b[43m                \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43muser\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43muser\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    691\u001b[0m \u001b[43m            \u001b[49m\u001b[43m}\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    692\u001b[0m \u001b[43m            \u001b[49m\u001b[43mcompletion_create_params\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mCompletionCreateParams\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    693\u001b[0m \u001b[43m        \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    694\u001b[0m \u001b[43m        \u001b[49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmake_request_options\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m    695\u001b[0m \u001b[43m            \u001b[49m\u001b[43mextra_headers\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mextra_headers\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mextra_query\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mextra_query\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mextra_body\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mextra_body\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtimeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtimeout\u001b[49m\n\u001b[0;32m    696\u001b[0m \u001b[43m        \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    697\u001b[0m \u001b[43m        \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mChatCompletion\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    698\u001b[0m \u001b[43m        \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m    699\u001b[0m \u001b[43m        \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mStream\u001b[49m\u001b[43m[\u001b[49m\u001b[43mChatCompletionChunk\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    700\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[1;32mD:\\21761A4230\\venv\\Lib\\site-packages\\openai\\_base_client.py:1213\u001b[0m, in \u001b[0;36mSyncAPIClient.post\u001b[1;34m(self, path, cast_to, body, options, files, stream, stream_cls)\u001b[0m\n\u001b[0;32m   1199\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mpost\u001b[39m(\n\u001b[0;32m   1200\u001b[0m     \u001b[38;5;28mself\u001b[39m,\n\u001b[0;32m   1201\u001b[0m     path: \u001b[38;5;28mstr\u001b[39m,\n\u001b[1;32m   (...)\u001b[0m\n\u001b[0;32m   1208\u001b[0m     stream_cls: \u001b[38;5;28mtype\u001b[39m[_StreamT] \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[0;32m   1209\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m ResponseT \u001b[38;5;241m|\u001b[39m _StreamT:\n\u001b[0;32m   1210\u001b[0m     opts \u001b[38;5;241m=\u001b[39m FinalRequestOptions\u001b[38;5;241m.\u001b[39mconstruct(\n\u001b[0;32m   1211\u001b[0m         method\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpost\u001b[39m\u001b[38;5;124m\"\u001b[39m, url\u001b[38;5;241m=\u001b[39mpath, json_data\u001b[38;5;241m=\u001b[39mbody, files\u001b[38;5;241m=\u001b[39mto_httpx_files(files), \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39moptions\n\u001b[0;32m   1212\u001b[0m     )\n\u001b[1;32m-> 1213\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m cast(ResponseT, \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrequest\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mopts\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream_cls\u001b[49m\u001b[43m)\u001b[49m)\n",
      "File \u001b[1;32mD:\\21761A4230\\venv\\Lib\\site-packages\\openai\\_base_client.py:902\u001b[0m, in \u001b[0;36mSyncAPIClient.request\u001b[1;34m(self, cast_to, options, remaining_retries, stream, stream_cls)\u001b[0m\n\u001b[0;32m    893\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mrequest\u001b[39m(\n\u001b[0;32m    894\u001b[0m     \u001b[38;5;28mself\u001b[39m,\n\u001b[0;32m    895\u001b[0m     cast_to: Type[ResponseT],\n\u001b[1;32m   (...)\u001b[0m\n\u001b[0;32m    900\u001b[0m     stream_cls: \u001b[38;5;28mtype\u001b[39m[_StreamT] \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[0;32m    901\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m ResponseT \u001b[38;5;241m|\u001b[39m _StreamT:\n\u001b[1;32m--> 902\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m    903\u001b[0m \u001b[43m        \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    904\u001b[0m \u001b[43m        \u001b[49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    905\u001b[0m \u001b[43m        \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    906\u001b[0m \u001b[43m        \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream_cls\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    907\u001b[0m \u001b[43m        \u001b[49m\u001b[43mremaining_retries\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mremaining_retries\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    908\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[1;32mD:\\21761A4230\\venv\\Lib\\site-packages\\openai\\_base_client.py:978\u001b[0m, in \u001b[0;36mSyncAPIClient._request\u001b[1;34m(self, cast_to, options, remaining_retries, stream, stream_cls)\u001b[0m\n\u001b[0;32m    976\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m retries \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m0\u001b[39m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_should_retry(err\u001b[38;5;241m.\u001b[39mresponse):\n\u001b[0;32m    977\u001b[0m     err\u001b[38;5;241m.\u001b[39mresponse\u001b[38;5;241m.\u001b[39mclose()\n\u001b[1;32m--> 978\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_retry_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m    979\u001b[0m \u001b[43m        \u001b[49m\u001b[43moptions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    980\u001b[0m \u001b[43m        \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    981\u001b[0m \u001b[43m        \u001b[49m\u001b[43mretries\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    982\u001b[0m \u001b[43m        \u001b[49m\u001b[43merr\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresponse\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mheaders\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    983\u001b[0m \u001b[43m        \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    984\u001b[0m \u001b[43m        \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream_cls\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    985\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    987\u001b[0m \u001b[38;5;66;03m# If the response is streamed then we need to explicitly read the response\u001b[39;00m\n\u001b[0;32m    988\u001b[0m \u001b[38;5;66;03m# to completion before attempting to access the response text.\u001b[39;00m\n\u001b[0;32m    989\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m err\u001b[38;5;241m.\u001b[39mresponse\u001b[38;5;241m.\u001b[39mis_closed:\n",
      "File \u001b[1;32mD:\\21761A4230\\venv\\Lib\\site-packages\\openai\\_base_client.py:1026\u001b[0m, in \u001b[0;36mSyncAPIClient._retry_request\u001b[1;34m(self, options, cast_to, remaining_retries, response_headers, stream, stream_cls)\u001b[0m\n\u001b[0;32m   1022\u001b[0m \u001b[38;5;66;03m# In a synchronous context we are blocking the entire thread. Up to the library user to run the client in a\u001b[39;00m\n\u001b[0;32m   1023\u001b[0m \u001b[38;5;66;03m# different thread if necessary.\u001b[39;00m\n\u001b[0;32m   1024\u001b[0m time\u001b[38;5;241m.\u001b[39msleep(timeout)\n\u001b[1;32m-> 1026\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m   1027\u001b[0m \u001b[43m    \u001b[49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   1028\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   1029\u001b[0m \u001b[43m    \u001b[49m\u001b[43mremaining_retries\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mremaining\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   1030\u001b[0m \u001b[43m    \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   1031\u001b[0m \u001b[43m    \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream_cls\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   1032\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[1;32mD:\\21761A4230\\venv\\Lib\\site-packages\\openai\\_base_client.py:978\u001b[0m, in \u001b[0;36mSyncAPIClient._request\u001b[1;34m(self, cast_to, options, remaining_retries, stream, stream_cls)\u001b[0m\n\u001b[0;32m    976\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m retries \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m0\u001b[39m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_should_retry(err\u001b[38;5;241m.\u001b[39mresponse):\n\u001b[0;32m    977\u001b[0m     err\u001b[38;5;241m.\u001b[39mresponse\u001b[38;5;241m.\u001b[39mclose()\n\u001b[1;32m--> 978\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_retry_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m    979\u001b[0m \u001b[43m        \u001b[49m\u001b[43moptions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    980\u001b[0m \u001b[43m        \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    981\u001b[0m \u001b[43m        \u001b[49m\u001b[43mretries\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    982\u001b[0m \u001b[43m        \u001b[49m\u001b[43merr\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresponse\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mheaders\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    983\u001b[0m \u001b[43m        \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    984\u001b[0m \u001b[43m        \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream_cls\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    985\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    987\u001b[0m \u001b[38;5;66;03m# If the response is streamed then we need to explicitly read the response\u001b[39;00m\n\u001b[0;32m    988\u001b[0m \u001b[38;5;66;03m# to completion before attempting to access the response text.\u001b[39;00m\n\u001b[0;32m    989\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m err\u001b[38;5;241m.\u001b[39mresponse\u001b[38;5;241m.\u001b[39mis_closed:\n",
      "File \u001b[1;32mD:\\21761A4230\\venv\\Lib\\site-packages\\openai\\_base_client.py:1026\u001b[0m, in \u001b[0;36mSyncAPIClient._retry_request\u001b[1;34m(self, options, cast_to, remaining_retries, response_headers, stream, stream_cls)\u001b[0m\n\u001b[0;32m   1022\u001b[0m \u001b[38;5;66;03m# In a synchronous context we are blocking the entire thread. Up to the library user to run the client in a\u001b[39;00m\n\u001b[0;32m   1023\u001b[0m \u001b[38;5;66;03m# different thread if necessary.\u001b[39;00m\n\u001b[0;32m   1024\u001b[0m time\u001b[38;5;241m.\u001b[39msleep(timeout)\n\u001b[1;32m-> 1026\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_request\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m   1027\u001b[0m \u001b[43m    \u001b[49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   1028\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcast_to\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcast_to\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   1029\u001b[0m \u001b[43m    \u001b[49m\u001b[43mremaining_retries\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mremaining\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   1030\u001b[0m \u001b[43m    \u001b[49m\u001b[43mstream\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   1031\u001b[0m \u001b[43m    \u001b[49m\u001b[43mstream_cls\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstream_cls\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   1032\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[1;32mD:\\21761A4230\\venv\\Lib\\site-packages\\openai\\_base_client.py:993\u001b[0m, in \u001b[0;36mSyncAPIClient._request\u001b[1;34m(self, cast_to, options, remaining_retries, stream, stream_cls)\u001b[0m\n\u001b[0;32m    990\u001b[0m         err\u001b[38;5;241m.\u001b[39mresponse\u001b[38;5;241m.\u001b[39mread()\n\u001b[0;32m    992\u001b[0m     log\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRe-raising status error\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m--> 993\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_make_status_error_from_response(err\u001b[38;5;241m.\u001b[39mresponse) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m    995\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_process_response(\n\u001b[0;32m    996\u001b[0m     cast_to\u001b[38;5;241m=\u001b[39mcast_to,\n\u001b[0;32m    997\u001b[0m     options\u001b[38;5;241m=\u001b[39moptions,\n\u001b[1;32m   (...)\u001b[0m\n\u001b[0;32m   1000\u001b[0m     stream_cls\u001b[38;5;241m=\u001b[39mstream_cls,\n\u001b[0;32m   1001\u001b[0m )\n",
      "\u001b[1;31mRateLimitError\u001b[0m: Error code: 429 - {'error': {'message': 'You exceeded your current quota, please check your plan and billing details. For more information on this error, read the docs: https://platform.openai.com/docs/guides/error-codes/api-errors.', 'type': 'insufficient_quota', 'param': None, 'code': 'insufficient_quota'}}"
     ]
    }
   ],
   "source": [
    "import os\n",
    "import json\n",
    "import openai\n",
    "\n",
    "# Initialize the OpenAI client\n",
    "client = openai.OpenAI(api_key=\"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\")\n",
    "\n",
    "# Define the prompt for hotel review analysis\n",
    "prompt = \"Analyzing hotel reviews to identify strengths and weaknesses. Please provide only the weaknesses and strengths.only 3 or 4\\n\"\n",
    "\n",
    "# Define the base directory path\n",
    "base_dir = r\"D:\\21761A4230\\preproced hotel data\"\n",
    "\n",
    "# Iterate through each subdirectory (hotel) in the base directory\n",
    "for hotel_dir in os.listdir(base_dir):\n",
    "    hotel_path = os.path.join(base_dir, hotel_dir)\n",
    "    output_file = os.path.join(hotel_path, f\"{hotel_dir}_strengths_weaknesses.txt\")\n",
    "    \n",
    "    with open(output_file, \"a\") as f_out:\n",
    "        # Iterate through each cluster file in the hotel directory\n",
    "        for cluster_file in os.listdir(hotel_path):\n",
    "            if cluster_file.endswith(\".json\"):\n",
    "                cluster_path = os.path.join(hotel_path, cluster_file)\n",
    "                \n",
    "                # Load the keywords from the cluster file\n",
    "                with open(cluster_path, \"r\") as f:\n",
    "                    cluster_data = json.load(f)\n",
    "                    keywords = cluster_data[\"hotels\"]\n",
    "                \n",
    "                # Analyze the keywords using OpenAI\n",
    "                response = client.chat.completions.create(\n",
    "                    model=\"gpt-3.5-turbo\",\n",
    "                    messages=[\n",
    "                        {\n",
    "                            \"role\": \"user\",\n",
    "                            \"content\": f\"{prompt}Keywords: {keywords}\"\n",
    "                        }\n",
    "                    ],\n",
    "                    temperature=1,\n",
    "                    max_tokens=256,\n",
    "                    top_p=1,\n",
    "                    frequency_penalty=0,\n",
    "                    presence_penalty=0\n",
    "                )\n",
    "                \n",
    "                # Write the OpenAI response to the output file\n",
    "                #f_out.write(f\"Cluster: {cluster_file}\\n\")\n",
    "                #f_out.write(f\"Keywords: {keywords}\\n\")\n",
    "                f_out.write(f\"OpenAI Response:\\n{response.choices[0].message.content}\\n\\n\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3559bfb9-0e04-4269-993f-4408380fad70",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import openai\n",
    "import csv\n",
    "\n",
    "# Initialize the OpenAI client\n",
    "client = openai.OpenAI(api_key=\"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\")\n",
    "\n",
    "# Define the function to process the text files\n",
    "def process_text_files(base_dir):\n",
    "    prompt = \"Identify the 8 best strengths and 8 best weaknesses from the given text:\\n\"\n",
    "    \n",
    "    for hotel_dir in os.listdir(base_dir):\n",
    "        hotel_path = os.path.join(base_dir, hotel_dir)\n",
    "        output_file = os.path.join(hotel_path, f\"{hotel_dir}_strengths_weaknesses.txt\")\n",
    "        \n",
    "        with open(output_file, \"r\") as f_in:\n",
    "            content = f_in.read()\n",
    "        \n",
    "        # Request OpenAI to provide the CSV file with the 8 best weaknesses and 8 best strengths\n",
    "        response = client.completions.create(\n",
    "            model=\"text-davinci-003\",\n",
    "            prompt=f\"{prompt}Text: {content}\",\n",
    "            max_tokens=256,\n",
    "            n=1,\n",
    "            stop=None\n",
    "        )\n",
    "        \n",
    "        # Save the CSV file\n",
    "        csv_output_file = os.path.join(hotel_path, f\"{hotel_dir}_strengths_weaknesses.csv\")\n",
    "        with open(csv_output_file, \"w\", newline=\"\") as f_out:\n",
    "            writer = csv.writer(f_out)\n",
    "            writer.writerow([\"Strengths\", \"Weaknesses\"])\n",
    "            for choice in response[\"choices\"][0][\"text\"].split(\"\\n\")[:16]:  # Split the response into strengths and weaknesses\n",
    "                writer.writerow([\"\", choice.strip()])\n",
    "\n",
    "# Process the text files in the base directory\n",
    "base_dir = r\"D:\\21761A4230\\preproced hotel data\"\n",
    "process_text_files(base_dir)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3c8c8d20-5694-4eaa-9752-b950c23b6daa",
   "metadata": {},
   "outputs": [],
   "source": [
    "!streamlit run s.py\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4a660091-94be-4186-bb19-9965be6b2207",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}