Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -48,7 +48,7 @@ def handle_query(message, history):
|
|
48 |
chat_text_qa_msgs = [
|
49 |
(
|
50 |
"user",
|
51 |
-
f"You are now the RedFerns Tech chatbot. Your aim is to provide answers to the user based on the conversation flow only.\n\nQuestion:\n{message
|
52 |
)
|
53 |
]
|
54 |
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
|
@@ -59,7 +59,7 @@ def handle_query(message, history):
|
|
59 |
|
60 |
# Use the Llama index to generate a response
|
61 |
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str="")
|
62 |
-
answer = query_engine.query(message
|
63 |
|
64 |
if hasattr(answer, 'response'):
|
65 |
response = answer.response
|
@@ -69,10 +69,11 @@ def handle_query(message, history):
|
|
69 |
response = "Sorry, I couldn't find an answer."
|
70 |
|
71 |
# Update chat history with the current interaction
|
72 |
-
chat_history.append([message
|
73 |
|
74 |
return response
|
75 |
|
|
|
76 |
# Example usage: Process PDF ingestion from directory
|
77 |
print("Processing PDF ingestion from directory:", PDF_DIRECTORY)
|
78 |
data_ingestion_from_directory()
|
|
|
48 |
chat_text_qa_msgs = [
|
49 |
(
|
50 |
"user",
|
51 |
+
f"You are now the RedFerns Tech chatbot. Your aim is to provide answers to the user based on the conversation flow only.\n\nQuestion:\n{message}"
|
52 |
)
|
53 |
]
|
54 |
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
|
|
|
59 |
|
60 |
# Use the Llama index to generate a response
|
61 |
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str="")
|
62 |
+
answer = query_engine.query(message)
|
63 |
|
64 |
if hasattr(answer, 'response'):
|
65 |
response = answer.response
|
|
|
69 |
response = "Sorry, I couldn't find an answer."
|
70 |
|
71 |
# Update chat history with the current interaction
|
72 |
+
chat_history.append([message, response])
|
73 |
|
74 |
return response
|
75 |
|
76 |
+
|
77 |
# Example usage: Process PDF ingestion from directory
|
78 |
print("Processing PDF ingestion from directory:", PDF_DIRECTORY)
|
79 |
data_ingestion_from_directory()
|