Spaces:
Running
Running
File size: 6,779 Bytes
4602937 fada25c 4615482 4602937 fada25c 4602937 2b44908 fada25c 2b44908 fada25c 2b44908 fada25c 3430157 fada25c 2b44908 fada25c 2b44908 fada25c 6dd9499 fada25c 6dd9499 e3cb39c 6dd9499 fada25c 6dd9499 fada25c 2b44908 fada25c 2b44908 fada25c 2b44908 fada25c 6dd9499 fada25c 2b44908 fada25c 6dd9499 7adc402 6dd9499 7adc402 86b945b 7adc402 e0b0a27 7adc402 0a5200d 5f6f331 7adc402 5f6f331 0a5200d 7adc402 0a5200d 448c3da 7adc402 0a5200d 7adc402 448c3da 7adc402 5f6f331 7adc402 448c3da 5f6f331 0a5200d 448c3da 0a5200d 7adc402 5f6f331 0a5200d 7adc402 0a5200d 5f6f331 0a5200d 448c3da 0a5200d 5f6f331 448c3da 7adc402 448c3da 7adc402 0a5200d 448c3da 5f6f331 7adc402 0a5200d 448c3da 86b945b 0a5200d 7adc402 0a5200d e0b0a27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
from dotenv import load_dotenv
import gradio as gr
import os
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from sentence_transformers import SentenceTransformer
# Load environment variables
load_dotenv()
# Configure the Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
model_name="meta-llama/Meta-Llama-3-8B-Instruct",
tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
context_window=3000,
token=os.getenv("HF_TOKEN"),
max_new_tokens=512,
generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
model_name="BAAI/bge-small-en-v1.5"
)
# Define the directory for persistent storage and data
PERSIST_DIR = "db"
PDF_DIRECTORY = 'data' # Changed to the directory containing PDFs
# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)
# Variable to store current chat conversation
current_chat_history = []
def data_ingestion_from_directory():
# Use SimpleDirectoryReader on the directory containing the PDF files
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
storage_context = StorageContext.from_defaults()
index = VectorStoreIndex.from_documents(documents)
index.storage_context.persist(persist_dir=PERSIST_DIR)
def handle_query(query):
chat_text_qa_msgs = [
(
"user",
"""
Your name is FernAI. Your aim is to provide the best service and information about RedFerns Tech company. You should provide answers based on the conversation flow and your final aim is attract the user to connect our company services. And summarize the answer try to give the answer with less words and effectively.
{context_str}
Question:
{query_str}
"""
)
]
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
# Load index from storage
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
index = load_index_from_storage(storage_context)
# Use chat history to enhance response
context_str = ""
for past_query, response in reversed(current_chat_history):
if past_query.strip():
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
answer = query_engine.query(query)
if hasattr(answer, 'response'):
response = answer.response
elif isinstance(answer, dict) and 'response' in answer:
response = answer['response']
else:
response = "Sorry, I couldn't find an answer."
# Update current chat history
current_chat_history.append((query, response))
return response
# Example usage: Process PDF ingestion from directory
print("Processing PDF ingestion from directory:", PDF_DIRECTORY)
data_ingestion_from_directory()
# Define the function to handle predictions
"""def predict(message,history):
response = handle_query(message)
return response"""
def predict(message, history):
logo_html = '''
<div class="circle-logo">
<img src="https://rb.gy/8r06eg" alt="FernAi">
</div>
'''
response = handle_query(message)
response_with_logo = f'<div class="response-with-logo">{logo_html}<div class="response-text">{response}</div></div>'
return response_with_logo
"""
# Custom CSS for styling
css = '''
.gradio-container {
display: flex;
flex-direction: column;
width: 100%;
max-width: 450px;
margin: 0 auto;
padding: 20px;
border: 1px solid #ddd;
border-radius: 10px;
background-color: #fff;
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
height: 100%;
max-height: 600px;
}
.gradio-logo {
text-align: center;
margin-bottom: 20px;
}
.circle-logo {
display: inline-block;
width: 40px;
height: 40px;
border-radius: 50%;
overflow: hidden;
margin-right: 10px;
vertical-align: middle;
}
.circle-logo img {
width: 100%;
height: 100%;
object-fit: cover;
}
.response-with-logo {
display: flex;
align-items: center;
margin-bottom: 10px;
}
.response-text {
display: inline-block;
vertical-align: middle;
font-size: 16px;
background-color: #fff;
border: 1px solid #ced4da;
border-radius: 15px 15px 15px 0;
padding: 10px;
max-width: 80%;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.gradio-chat-history {
flex: 1;
overflow-y: auto;
padding: 15px;
border-bottom: 1px solid #ddd;
background-color: #f9f9f9;
border-radius: 5px;
margin-bottom: 10px;
max-height: 500px;
}
.gradio-message {
margin-bottom: 15px;
display: flex;
flex-direction: column;
}
.gradio-message.user .gradio-message-content {
background-color: #E1FFC7;
align-self: flex-end;
border: 1px solid #c3e6cb;
border-radius: 15px 15px 0 15px;
padding: 10px;
font-size: 16px;
margin-bottom: 5px;
max-width: 80%;
}
.gradio-message.bot .gradio-message-content {
background-color: #fff;
align-self: flex-start;
border: 1px solid #ced4da;
border-radius: 15px 15px 15px 0;
padding: 10px;
font-size: 16px;
margin-bottom: 5px;
max-width: 80%;
}
.gradio-footer {
display: flex;
padding: 10px;
border-top: 1px solid #ddd;
background-color: #F8D7DA;
position: absolute;
bottom: 0;
width: calc(100% - 40px);
}
footer {
display: none !important;
background-color: #F8D7DA;
}
.gradio-chat-history .gradio-message.bot .gradio-message-content::before {
content: none;
}
'''
logo_html = '''
<div class="gradio-logo">
<img src="https://i.ibb.co/xfWKwkG/Screenshot-2024-07-08-032131.png" alt="FernAi" style="display: block; margin: 0 auto; width: 100px; height: 100px;">
</div>
'''
# Create the Blocks layout with the custom HTML and ChatInterface
with gr.Blocks(theme=gr.themes.Monochrome(), fill_height=True, css=css) as demo:
with gr.Column():
gr.HTML(logo_html)
gr.ChatInterface(predict, clear_btn=None, undo_btn=None, retry_btn=None)
# Launch the interface
demo.launch()
"""
gr.ChatInterface(predict,
title="FernAi_chatBot",
description="Ask any Redfernstech any questions",
clear_btn=None, undo_btn=None, retry_btn=None,
examples=['Tell me about Redfernstech?', 'Services in Redfernstech?']
).launch() # Launching the web interface. |