Spaces:
Running
Running
File size: 4,796 Bytes
4602937 fada25c 4615482 4602937 fada25c 4602937 2b44908 fada25c 2b44908 fada25c a9cd3f2 fada25c 3430157 fada25c 2b44908 fada25c 2b44908 fada25c 6dd9499 fada25c 6dd9499 0808b5a 6dd9499 fada25c 6dd9499 fada25c 2b44908 fada25c 2b44908 fada25c 2b44908 fada25c 6dd9499 fada25c 2b44908 fada25c 6dd9499 7adc402 6dd9499 7adc402 5d52e09 7adc402 86b945b 7adc402 5d52e09 7adc402 5d52e09 7adc402 5d52e09 c8d82dc 5d52e09 7adc402 5d52e09 c8d82dc 7adc402 0a5200d 7adc402 7f3fc7b 455007f 6570683 0a5200d e0b0a27 f2f41f0 cf24c1a e0b0a27 0b1867c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
from dotenv import load_dotenv
import gradio as gr
import os
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from sentence_transformers import SentenceTransformer
# Load environment variables
load_dotenv()
# Configure the Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
model_name="meta-llama/Meta-Llama-3-8B-Instruct",
tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
context_window=3000,
token=os.getenv("HF_TOKEN"),
max_new_tokens=512,
generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
model_name="BAAI/bge-small-en-v1.5"
)
# Define the directory for persistent storage and data
PERSIST_DIR = "db"
PDF_DIRECTORY = 'data' # Changed to the directory containing PDFs
# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)
# Variable to store current chat conversation
current_chat_history = []
def data_ingestion_from_directory():
# Use SimpleDirectoryReader on the directory containing the PDF files
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
storage_context = StorageContext.from_defaults()
index = VectorStoreIndex.from_documents(documents)
index.storage_context.persist(persist_dir=PERSIST_DIR)
def handle_query(query):
chat_text_qa_msgs = [
(
"user",
"""
As FernAI, your goal is to offer top-tier service and information about RedFerns Tech company.
Provide concise answers based on the conversation flow. Ultimately, aim to attract users to connect with our services.
Summarize responses effectively in 20-60 words without unnecessary repetition.
{context_str}
Question:
{query_str}
"""
)
]
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
# Load index from storage
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
index = load_index_from_storage(storage_context)
# Use chat history to enhance response
context_str = ""
for past_query, response in reversed(current_chat_history):
if past_query.strip():
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
answer = query_engine.query(query)
if hasattr(answer, 'response'):
response = answer.response
elif isinstance(answer, dict) and 'response' in answer:
response = answer['response']
else:
response = "Sorry, I couldn't find an answer."
# Update current chat history
current_chat_history.append((query, response))
return response
# Example usage: Process PDF ingestion from directory
print("Processing PDF ingestion from directory:", PDF_DIRECTORY)
data_ingestion_from_directory()
# Define the function to handle predictions
"""def predict(message,history):
response = handle_query(message)
return response"""
def predict(message, history):
# Your logo HTML code
logo_html = '''
<div class="circle-logo">
<img src="https://rb.gy/8r06eg" alt="FernAi">
</div>
'''
# Assuming handle_query function handles the message and returns a response
response = handle_query(message)
# Prepare the response with logo HTML
response_with_logo = f'<div class="response-with-logo">{logo_html}<div class="response-text">{response}</div></div>'
# Convert history to a string (if it's a list)
if isinstance(history, list):
history = ' '.join(map(str, history))
# Save history to kk.txt
with open('kk.txt', 'a') as file:
file.write(history + '\n')
return response_with_logo
# Custom CSS for styling
css = '''
.circle-logo {
display: inline-block;
width: 40px;
height: 40px;
border-radius: 50%;
overflow: hidden;
margin-right: 10px;
vertical-align: middle;
}
.circle-logo img {
width: 100%;
height: 100%;
object-fit: cover;
}
.response-with-logo {
display: flex;
align-items: center;
margin-bottom: 10px;
}
footer {
display: none !important;
background-color: #F8D7DA;
}
label.svelte-1b6s6s {display: none}
'''
gr.ChatInterface(predict,
css=css,
description="FernAI",
clear_btn=None, undo_btn=None, retry_btn=None,
examples=['Tell me about Redfernstech?', 'Services in Redfernstech?']
).launch(share = False) |