srinuksv commited on
Commit
b35537f
1 Parent(s): e9360cc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -9
app.py CHANGED
@@ -40,17 +40,15 @@ def data_ingestion_from_directory():
40
  index = VectorStoreIndex.from_documents(documents)
41
  index.storage_context.persist(persist_dir=PERSIST_DIR)
42
 
43
- def handle_query(message, chat_history):
44
  # Prepare the chat history for context
45
- context_str = ""
46
- for user_message, bot_response in chat_history:
47
- context_str += f"User asked: '{user_message}'\nBot answered: '{bot_response}'\n"
48
 
49
  # Prepare the chat prompt template
50
  chat_text_qa_msgs = [
51
  (
52
  "user",
53
- f"You are now the RedFerns Tech chatbot. Your aim is to provide answers to the user based on the conversation flow only.\n\nQuestion:\n{message}"
54
  )
55
  ]
56
  text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
@@ -60,8 +58,8 @@ def handle_query(message, chat_history):
60
  index = load_index_from_storage(storage_context)
61
 
62
  # Use the Llama index to generate a response
63
- query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
64
- answer = query_engine.query(message)
65
 
66
  if hasattr(answer, 'response'):
67
  response = answer.response
@@ -71,7 +69,7 @@ def handle_query(message, chat_history):
71
  response = "Sorry, I couldn't find an answer."
72
 
73
  # Update chat history with the current interaction
74
- chat_history.append([message, response])
75
 
76
  return response
77
 
@@ -82,7 +80,7 @@ data_ingestion_from_directory()
82
  # Create the Gradio interface
83
  interface = gr.ChatInterface(
84
  fn=handle_query,
85
- inputs=gr.Textbox(label="Ask me anything about the document...", placeholder="Type your question here."),
86
  title="RedfernsTech Q&A Chatbot",
87
  description="Ask me anything about the uploaded document."
88
  )
 
40
  index = VectorStoreIndex.from_documents(documents)
41
  index.storage_context.persist(persist_dir=PERSIST_DIR)
42
 
43
+ def handle_query(message, history):
44
  # Prepare the chat history for context
45
+ chat_history = [[msg["text"], ""] for msg in history]
 
 
46
 
47
  # Prepare the chat prompt template
48
  chat_text_qa_msgs = [
49
  (
50
  "user",
51
+ f"You are now the RedFerns Tech chatbot. Your aim is to provide answers to the user based on the conversation flow only.\n\nQuestion:\n{message['text']}"
52
  )
53
  ]
54
  text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
 
58
  index = load_index_from_storage(storage_context)
59
 
60
  # Use the Llama index to generate a response
61
+ query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str="")
62
+ answer = query_engine.query(message['text'])
63
 
64
  if hasattr(answer, 'response'):
65
  response = answer.response
 
69
  response = "Sorry, I couldn't find an answer."
70
 
71
  # Update chat history with the current interaction
72
+ chat_history.append([message['text'], response])
73
 
74
  return response
75
 
 
80
  # Create the Gradio interface
81
  interface = gr.ChatInterface(
82
  fn=handle_query,
83
+ examples=[{"text": "hello"}, {"text": "hola"}, {"text": "merhaba"}],
84
  title="RedfernsTech Q&A Chatbot",
85
  description="Ask me anything about the uploaded document."
86
  )