Spaces:
Running
Running
amaye15
commited on
Commit
·
bc82930
1
Parent(s):
b9c19b4
Feat - concurrent request update
Browse files
src/api/models/embedding_models.py
CHANGED
@@ -8,7 +8,8 @@ class CreateEmbeddingRequest(BaseModel):
|
|
8 |
target_column: str = "product_type"
|
9 |
output_column: str = "embedding"
|
10 |
model: str = "text-embedding-3-small"
|
11 |
-
batch_size: int =
|
|
|
12 |
dataset_name: str = "re-mind/product_type_embedding"
|
13 |
|
14 |
|
|
|
8 |
target_column: str = "product_type"
|
9 |
output_column: str = "embedding"
|
10 |
model: str = "text-embedding-3-small"
|
11 |
+
batch_size: int = 10
|
12 |
+
max_concurrent_requests: int = 10
|
13 |
dataset_name: str = "re-mind/product_type_embedding"
|
14 |
|
15 |
|
src/api/services/embedding_service.py
CHANGED
@@ -1,3 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from openai import AsyncOpenAI
|
2 |
import logging
|
3 |
from typing import List, Dict
|
@@ -17,20 +80,23 @@ class EmbeddingService:
|
|
17 |
self,
|
18 |
openai_api_key: str,
|
19 |
model: str = "text-embedding-3-small",
|
20 |
-
batch_size: int =
|
|
|
21 |
):
|
22 |
self.client = AsyncOpenAI(api_key=openai_api_key)
|
23 |
self.model = model
|
24 |
self.batch_size = batch_size
|
|
|
25 |
|
26 |
async def get_embedding(self, text: str) -> List[float]:
|
27 |
"""Generate embeddings for the given text using OpenAI."""
|
28 |
text = text.replace("\n", " ")
|
29 |
try:
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
34 |
except Exception as e:
|
35 |
logger.error(f"Failed to generate embedding: {e}")
|
36 |
raise OpenAIError(f"OpenAI API error: {e}")
|
|
|
1 |
+
# from openai import AsyncOpenAI
|
2 |
+
# import logging
|
3 |
+
# from typing import List, Dict
|
4 |
+
# import pandas as pd
|
5 |
+
# import asyncio
|
6 |
+
# from src.api.exceptions import OpenAIError
|
7 |
+
|
8 |
+
# # Set up structured logging
|
9 |
+
# logging.basicConfig(
|
10 |
+
# level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
11 |
+
# )
|
12 |
+
# logger = logging.getLogger(__name__)
|
13 |
+
|
14 |
+
|
15 |
+
# class EmbeddingService:
|
16 |
+
# def __init__(
|
17 |
+
# self,
|
18 |
+
# openai_api_key: str,
|
19 |
+
# model: str = "text-embedding-3-small",
|
20 |
+
# batch_size: int = 100,
|
21 |
+
# ):
|
22 |
+
# self.client = AsyncOpenAI(api_key=openai_api_key)
|
23 |
+
# self.model = model
|
24 |
+
# self.batch_size = batch_size
|
25 |
+
|
26 |
+
# async def get_embedding(self, text: str) -> List[float]:
|
27 |
+
# """Generate embeddings for the given text using OpenAI."""
|
28 |
+
# text = text.replace("\n", " ")
|
29 |
+
# try:
|
30 |
+
# response = await self.client.embeddings.create(
|
31 |
+
# input=[text], model=self.model
|
32 |
+
# )
|
33 |
+
# return response.data[0].embedding
|
34 |
+
# except Exception as e:
|
35 |
+
# logger.error(f"Failed to generate embedding: {e}")
|
36 |
+
# raise OpenAIError(f"OpenAI API error: {e}")
|
37 |
+
|
38 |
+
# async def create_embeddings(
|
39 |
+
# self, df: pd.DataFrame, target_column: str, output_column: str
|
40 |
+
# ) -> pd.DataFrame:
|
41 |
+
# """Create embeddings for the target column in the dataset."""
|
42 |
+
# logger.info("Generating embeddings...")
|
43 |
+
# batches = [
|
44 |
+
# df[i : i + self.batch_size] for i in range(0, len(df), self.batch_size)
|
45 |
+
# ]
|
46 |
+
# processed_batches = await asyncio.gather(
|
47 |
+
# *[
|
48 |
+
# self._process_batch(batch, target_column, output_column)
|
49 |
+
# for batch in batches
|
50 |
+
# ]
|
51 |
+
# )
|
52 |
+
# return pd.concat(processed_batches)
|
53 |
+
|
54 |
+
# async def _process_batch(
|
55 |
+
# self, df_batch: pd.DataFrame, target_column: str, output_column: str
|
56 |
+
# ) -> pd.DataFrame:
|
57 |
+
# """Process a batch of rows to generate embeddings."""
|
58 |
+
# embeddings = await asyncio.gather(
|
59 |
+
# *[self.get_embedding(row[target_column]) for _, row in df_batch.iterrows()]
|
60 |
+
# )
|
61 |
+
# df_batch[output_column] = embeddings
|
62 |
+
# return df_batch
|
63 |
+
|
64 |
from openai import AsyncOpenAI
|
65 |
import logging
|
66 |
from typing import List, Dict
|
|
|
80 |
self,
|
81 |
openai_api_key: str,
|
82 |
model: str = "text-embedding-3-small",
|
83 |
+
batch_size: int = 10,
|
84 |
+
max_concurrent_requests: int = 10, # Limit to 10 concurrent requests
|
85 |
):
|
86 |
self.client = AsyncOpenAI(api_key=openai_api_key)
|
87 |
self.model = model
|
88 |
self.batch_size = batch_size
|
89 |
+
self.semaphore = asyncio.Semaphore(max_concurrent_requests) # Rate limiter
|
90 |
|
91 |
async def get_embedding(self, text: str) -> List[float]:
|
92 |
"""Generate embeddings for the given text using OpenAI."""
|
93 |
text = text.replace("\n", " ")
|
94 |
try:
|
95 |
+
async with self.semaphore: # Acquire a semaphore slot
|
96 |
+
response = await self.client.embeddings.create(
|
97 |
+
input=[text], model=self.model
|
98 |
+
)
|
99 |
+
return response.data[0].embedding
|
100 |
except Exception as e:
|
101 |
logger.error(f"Failed to generate embedding: {e}")
|
102 |
raise OpenAIError(f"OpenAI API error: {e}")
|