Spaces:
Sleeping
Sleeping
import chainlit as cl | |
import pandas as pd | |
from datetime import datetime | |
async def pose_objections(session_state): | |
await cl.AskUserMessage( | |
content="Are you ready?", timeout=300 | |
).send() | |
objection_chain = cl.user_session.get("objection_chain") | |
# Retrieve the list of objections | |
objections = cl.user_session.get("objections") | |
#print (objections[0]) | |
objection_responses = {} | |
# Iterate through each objection | |
for i, objection in enumerate(objections): | |
# Return the objection in the form of a question | |
await cl.Message(content=f"Objection: {objection}").send() | |
# Capture user input | |
user_response = await cl.AskUserMessage( | |
content="How would you respond to this objection?", timeout=600 | |
).send() | |
objection_responses[objection] = user_response['content'] | |
# Process the user's response (you can implement your logic here) | |
# new_objection_response = generate_response_to_objection(user_response.content) | |
# Send the response back to the user | |
# await cl.Message(content=f"Response to objection {i + 1}: {new_objection_response}").send() | |
print (objection_responses) | |
data = [] | |
for objection, response in objection_responses.items(): | |
data.append({ | |
"timestamp": datetime.now(), # Capture the current timestamp | |
"objection": objection, | |
"response": response | |
}) | |
# Create a DataFrame | |
user_response = pd.DataFrame(data) | |
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S') | |
#r esponse = await generate_response_to_objection(user_response, 0) | |
# user_response.to_csv(f'data/user_response_{timestamp}.csv', index=Fals |