File size: 5,909 Bytes
0e9ef68
 
 
 
 
2393995
 
0e9ef68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2393995
 
 
 
0e9ef68
 
 
 
 
 
 
 
 
 
 
2393995
 
 
 
0e9ef68
 
2393995
 
 
0e9ef68
 
 
 
 
 
 
 
 
 
 
2393995
0e9ef68
 
2393995
 
 
0e9ef68
 
2393995
 
 
 
 
 
 
 
 
0e9ef68
 
 
 
 
 
 
 
 
 
 
 
2393995
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import asyncio
import json
import re
from datetime import datetime

from utils_evaluate import evaluate_answers, evaluate_objections
from utils_prep import offer_initial_actions
async def display_llm_responses(cl, session_state):
    output = f"**Responses**"
    await cl.Message(content=output).send()
    for query, response in zip(session_state.queries, session_state.llm_responses):
        query_display = {
            "command": query["command"],
            "message": query["message"],
            "mood_score": query["mood_score"],
            "previous_question": query["previous_question"],
            "rep_answer": query["rep_answer"],
            "next_question": query["next_question"],
        }
        query_json = json.dumps(query_display, indent=2)
        await cl.Message(content="Query:").send()
        await cl.Message(content=query_json).send()
        await cl.Message(content="Response:").send()
        await cl.Message(content=response).send()

    remaining_queries = session_state.queries[len(session_state.llm_responses):]
    remaining_responses = session_state.llm_responses[len(session_state.queries):]

    for query in remaining_queries:
        await cl.Message(content=f"**Query:** {query}").send()

    for response in remaining_responses:
        await cl.Message(content=f"**Response:** {response}").send()

def format_score(score):
    if isinstance(score, (int, float)):
        return f"{score*100:.1f}%"
    return score 

def format_rogue_score(score):
    if isinstance(score, str):
        match = re.search(r'precision=([\d.]+), recall=([\d.]+), fmeasure=([\d.]+)', score)
        if match:
            precision = float(match.group(1))
            recall = float(match.group(2))
            fmeasure = float(match.group(3))
            return f"Precision: {precision*100:.1f}%, Recall: {recall*100:.1f}%, FMeasure: {fmeasure*100:.1f}%"
    else:
        precision = score.precision
        recall = score.recall
        fmeasure = score.fmeasure
        return f"Precision: {precision*100:.1f}%, Recall: {recall*100:.1f}%, FMeasure: {fmeasure*100:.1f}%"     
    return score  #

def format_datetime(dt):
    if isinstance(dt, datetime):
        return dt.strftime("%Y-%m-%d %H:%M") 
    return str(dt)  #

async def display_evaluation_results(cl, session_state):
    out_text = "*Preparing evaluation results ...*"
    await cl.Message(content=out_text).send()

    if session_state.do_evaluation:
        evaluate_answers(session_state) 
    elif session_state.add_objections_to_analysis:
        evaluate_objections(session_state)
    await asyncio.sleep(1)

    output = f"**Session Summary**"
    await cl.Message(content=output).send()
    output = f"**Start Time:** {format_datetime(session_state.start_time)} \n"
    output = output + f"**End Time:** {format_datetime(session_state.end_time)} \n"
    output = output + f"**Duration:** {session_state.duration_minutes} minutes \n"
    output = output + f"**Total Number of Questions:** {len(session_state.questions)} \n"
    output = output + f"**Total Questions Answered:** {len(session_state.responses)} \n"
    await cl.Message(content=output).send()

    if session_state.do_ragas_evaluation:
        results_df = session_state.ragas_results.to_pandas()
        columns_to_average = ['answer_relevancy', 'answer_correctness']
        averages = results_df[columns_to_average].mean()

    await cl.Message(content="**Overall Summary (By SalesBuddy)**").send()
    output = f"**SalesBuddy Score:** {session_state.responses[-1]['overall_score']} \n"
    output = output + f"**SalesBuddy Evaluation:** {session_state.responses[-1]['overall_evaluation']} \n"
    output = output + f"**SalesBuddy Final Mood Score:** {session_state.responses[-1]['mood_score']} \n"
    await cl.Message(content=output).send()

    if session_state.do_ragas_evaluation:
        await cl.Message(content="**Average Scores - Based on RAGAS**").send()
        output = "Answer Relevancy: " + str(format_score(averages['answer_relevancy'])) + "\n"
        output = output + "Answer Correctness: " + str(format_score(averages['answer_correctness'])) + "\n"
        await cl.Message(content=output).send()

    await cl.Message(content="**Individual Question Scores**").send()

    for index, resp in enumerate(session_state.responses):
        
        output = f"""
            **Question:** {resp.get('question', 'N/A')}
            **Answer:** {resp.get('response', 'N/A')} 
            **SalesBuddy Evaluation:** {resp.get('response_evaluation', 'N/A')}
            **Evaluation Score:** {resp.get('response_score', 'N/A')}
        """
        if session_state.do_ragas_evaluation:
            scores = session_state.scores[index]
            relevancy = scores.get('answer_relevancy', 'N/A')
            correctness = scores.get('answer_correctness', 'N/A')
            bleu_score = scores.get('bleu_score', 'N/A')
            rouge1_score = scores.get('rouge_score', {}).get('rouge1', 'N/A')
            rouge1_output = format_rogue_score(rouge1_score)
            rougeL_score = scores.get('rouge_score', {}).get('rougeL', 'N/A')
            rougeL_output = format_rogue_score(rougeL_score)
            semantic_similarity_score = scores.get('semantic_similarity_score', 'N/A')
            numbers = f"""   
                **Answer Relevancy:** {format_score(relevancy)}
                **Answer Correctness:** {format_score(correctness)}
                **BLEU Score:** {format_score(bleu_score)}
                **ROUGE 1 Score:** {rouge1_output}
                **ROUGE L Score:** {rougeL_output}
                    **Semantic Similarity Score:** {format_score(semantic_similarity_score)}
            """ 
            await cl.Message(content=output).send()
            await cl.Message(content=numbers).send()
        else:
            await cl.Message(content=output).send()

    await offer_initial_actions()