Spaces:
Sleeping
Sleeping
File size: 1,730 Bytes
0e9ef68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import chainlit as cl
import pandas as pd
from datetime import datetime
async def pose_objections(session_state):
await cl.AskUserMessage(
content="Are you ready?", timeout=300
).send()
objection_chain = cl.user_session.get("objection_chain")
# Retrieve the list of objections
objections = cl.user_session.get("objections")
#print (objections[0])
objection_responses = {}
# Iterate through each objection
for i, objection in enumerate(objections):
# Return the objection in the form of a question
await cl.Message(content=f"Objection: {objection}").send()
# Capture user input
user_response = await cl.AskUserMessage(
content="How would you respond to this objection?", timeout=600
).send()
objection_responses[objection] = user_response['content']
# Process the user's response (you can implement your logic here)
# new_objection_response = generate_response_to_objection(user_response.content)
# Send the response back to the user
# await cl.Message(content=f"Response to objection {i + 1}: {new_objection_response}").send()
print (objection_responses)
data = []
for objection, response in objection_responses.items():
data.append({
"timestamp": datetime.now(), # Capture the current timestamp
"objection": objection,
"response": response
})
# Create a DataFrame
user_response = pd.DataFrame(data)
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
#r esponse = await generate_response_to_objection(user_response, 0)
# user_response.to_csv(f'data/user_response_{timestamp}.csv', index=Fals |