Spaces:
Sleeping
Sleeping
File size: 12,014 Bytes
dc4de02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import os
from typing import List, Dict
from chainlit.types import AskFileResponse
from qdrant_client import QdrantClient
from qdrant_client.http.models import Distance, VectorParams
from langchain_qdrant import QdrantVectorStore
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import PyMuPDFLoader
from langchain_openai.embeddings import OpenAIEmbeddings
from langchain.storage import LocalFileStore
from langchain.embeddings import CacheBackedEmbeddings
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.globals import set_llm_cache
from langchain_openai import ChatOpenAI
from langchain_core.caches import InMemoryCache
from operator import itemgetter
from langchain_core.runnables.passthrough import RunnablePassthrough
from langchain.schema.runnable.config import RunnableConfig
from langsmith.evaluation import LangChainStringEvaluator, evaluate
from datetime import datetime
from objection_eval import generate_response_to_objection
import pandas as pd
import uuid
import chainlit as cl
import dotenv
import tempfile
## Aaron to improve
## add customer-based value prop to load:
## compare and contract sales rep value prop & business domain
## use that list to generate objections that is close to sales opportunity
# Load environment variables from .env file
dotenv.load_dotenv()
# Access the OpenAI API key
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
set_llm_cache(InMemoryCache())
def process_value_prop_pdf(file: AskFileResponse) -> str:
"""
Process the value proposition PDF file and return its content as a string.
Args:
file (AskFileResponse): The uploaded PDF file.
Returns:
str: The extracted content from the PDF.
"""
# Create a temporary file to store the uploaded content
with tempfile.NamedTemporaryFile(mode="wb", delete=False) as temp_file:
temp_file.write(file.content)
temp_file_path = temp_file.name
# Load the PDF using PyMuPDFLoader
loader = PyMuPDFLoader(temp_file_path)
documents = loader.load()
# Combine the content of all pages into a single string
value_prop_text = "\n".join(doc.page_content for doc in documents)
# Return the text extracted from the PDF
return value_prop_text
text_splitter = RecursiveCharacterTextSplitter(separators=["\n\n","\n"],chunk_size=200, chunk_overlap=20)
# QDrant Client Setup
collection_name = f"pdf_to_parse_{uuid.uuid4()}"
client = QdrantClient(":memory:")
client.create_collection(
collection_name=collection_name,
vectors_config=VectorParams(size=1536, distance=Distance.COSINE),
)
# Embedding Model
core_embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
# Internal object to store objections
objections = []
def process_text_file(file: AskFileResponse):
import tempfile
with tempfile.NamedTemporaryFile(mode="w", delete=False) as temp_file:
with open(temp_file.name, "wb") as f:
f.write(file.content)
Loader = PyMuPDFLoader
loader = Loader(temp_file.name)
documents = loader.load()
docs = text_splitter.split_documents(documents)
for i, doc in enumerate(docs):
doc.metadata["source"] = f"source_{i}"
return docs
# Function to generate a response to the user's objection
def generate_response_to_objection(user_response, num):
from langchain_openai import ChatOpenAI
from ragas.llms.base import LangchainLLMWrapper
openai_model = LangchainLLMWrapper(ChatOpenAI(model_name="gpt-4o"))
scorer = SatisfyRate(llm=openai_model)
satify_0_1 = scorer.single_turn_ascore(user_response['objection'][num], user_response['response'][num])
# Implement your logic to generate a response based on the user's input
return f"Response to your objection: {user_response['objection'][num],user_response['response'][num], satify_0_1}" # Placeholder response
@cl.on_chat_start
async def on_chat_start():
# Ask for the first PDF file (Potential Customer Business Domain)
files = None
while files is None:
files = await cl.AskFileMessage(
content="Please upload a PDF for Potential Customer Business Domain to begin!",
accept=["application/pdf"],
max_size_mb=2,
timeout=180,
).send()
first_file = files[0]
# Notify the user that the file is being processed
msg = cl.Message(
content=f"Processing `{first_file.name}`...", disable_human_feedback=True
)
await msg.send()
# Process the first file
texts = process_text_file(first_file)
print(f"Processing {len(texts)} text chunks from the first file")
# Ask for the second PDF file (Value Proposition)
files = None
while files is None:
files = await cl.AskFileMessage(
content="Please upload our customer-specific value proposition PDF.",
accept=["application/pdf"],
max_size_mb=2,
timeout=180,
).send()
second_file = files[0]
# Notify the user that the second file is being processed
msg = cl.Message(
content=f"Processing `{second_file.name}`...", disable_human_feedback=True
)
await msg.send()
# Process the second file
value_prop_content = process_value_prop_pdf(second_file)
print(f"Processing {len(value_prop_content)} text chunks from the second file")
#print(value_prop_content)
# Create a Local File Store for caching
store = LocalFileStore("./cache/")
cached_embedder = CacheBackedEmbeddings.from_bytes_store(
core_embeddings, store, namespace=core_embeddings.model
)
# QDrant Vector Store Setup
vectorstore = QdrantVectorStore(
client=client,
collection_name=collection_name,
embedding=cached_embedder
)
vectorstore.add_documents(texts)
retriever = vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 5})
chat_openai = ChatOpenAI() #model='gpt-4o')
# RAG Chain for generating objections
objection_prompt_template = """\
Internally, review the value proposition information of sales rep's company then review your Context.
Internally, find areas where the sales' product/service could help add value and where it fails to fit.
Internally, review this final list and think step-by-step on what likely objections to buying product/service.
Using these thoughts, generate 5 Context-based sales objections.
The output is numbered objections only.
For example:
'1. Our current pricing structure is already optimized and we do not see the immediate need for AI assistance in pricing complex structural options in Foreign Exchange.'
'2. We have a dedicated team handling customer experience and efficiency, and we do not see how integrating AI for pricing options would significantly improve these aspects.',
'3. While we acknowledge the importance of technology and innovation in banking, we are currently focusing on other areas for digital transformation and do not prioritize the use of AI in pricing at this time.'
'4. Our customer base might not be ready for a shift towards AI-driven pricing models, and introducing such a change could potentially create confusion and resistance among our clients.',
'5. We are cautious about the potential risks and uncertainties associated with relying heavily on AI for pricing, especially in the volatile Foreign Exchange market where human expertise and judgment are highly valued.'
The output is NOT intro phrases or ** text **:
Context: {context}
Value Proposition: {{value_prop_content}}
Sales Opportunity: {{sales_opportunity}}
"""
# Create a chain for generating objections with the retrieved context
objection_chain = (
{"context": itemgetter("question") | retriever}
| RunnablePassthrough.assign(context=itemgetter("context"))
| ChatPromptTemplate.from_messages([
("system", "You a potential customer interested in the offering from this sales rep. Please use context business name and your name found in sales_opportunity."),
("human", objection_prompt_template)
])
| chat_openai
)
# Ask the user for the sales opportunity
sales_opportunity = await cl.AskUserMessage(
content="Please describe the sales opportunity you want to discuss.", timeout=300
).send()
#print(sales_opportunity['content'])
# Retrieve the documents based on the query (here we're simulating with the sales opportunity)
retrieved_docs = retriever.get_relevant_documents(value_prop_content)
# Extract the content of the retrieved documents (chunks)
context_chunks = [doc.page_content for doc in retrieved_docs]
# Combine the retrieved context chunks into a single string
context = "\n\n".join(context_chunks)
# Log and display the retrieved chunks to Chainlit
await cl.Message(content=f"Retrieved context chunks:\n{context}", author="retriever").send()
#print (sales_opportunity["content"])
# Generate objections using the chain, with the context included
#print ({"question": "Generate sales objections from {{value_prop_content}}", "sales_opportunity": sales_opportunity["content"], "context": context})
objection_response = objection_chain.invoke({"question": "Generate 3 sales objections", "sales_opportunity": sales_opportunity["content"], "context": context})
objections.extend(objection_response.content.split('\n')) # Assuming each objection is on a new line
# Remove empty strings or strings with only spaces
cleaned_objections = [objection for objection in objections if objection.strip()]
# Output the cleaned list
print(cleaned_objections)
# Store the objection chain in user session
cl.user_session.set("objection_chain", objection_chain)
cl.user_session.set("objections", objections)
await cl.Message(content="We are ready to enter Sales 'Sparring'. Ok? ").send()
@cl.on_message
async def main(message):
"""
This function will be called every time a message is received from a session.
We will use the LCEL RAG chain to generate a response to the user query.
The LCEL RAG chain is stored in the user session, and is unique to each user session - this is why we can access it here.
"""
await cl.AskUserMessage(
content="Are you ready?", timeout=300
).send()
objection_chain = cl.user_session.get("objection_chain")
#msg = cl.Message(content="")
# Retrieve the list of objections
objections = cl.user_session.get("objections")
#print (objections[0])
objection_responses = {}
# Iterate through each objection
for i, objection in enumerate(objections):
# Return the objection in the form of a question
await cl.Message(content=f"Objection: {objection}").send()
# Capture user input
user_response = await cl.AskUserMessage(
content="How would you respond to this objection?", timeout=600
).send()
objection_responses[objection] = user_response['content']
# Process the user's response (you can implement your logic here)
#new_objection_response = generate_response_to_objection(user_response.content)
# Send the response back to the user
#await cl.Message(content=f"Response to objection {i + 1}: {new_objection_response}").send()
print (objection_responses)
data = []
for objection, response in objection_responses.items():
data.append({
"timestamp": datetime.now(), # Capture the current timestamp
"objection": objection,
"response": response
})
# Create a DataFrame
user_response = pd.DataFrame(data)
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
#response = await generate_response_to_objection(user_response, 0)
#user_response.to_csv(f'data/user_response_{timestamp}.csv', index=False)
|