File size: 15,354 Bytes
e8bbe1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d01d7e
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import json
import os
from langchain.document_loaders import CSVLoader, PyPDFLoader, Docx2txtLoader
from langgraph.graph import StateGraph, END
from langchain.prompts import PromptTemplate
from langchain.schema import Document, AIMessage
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from pathlib import Path
from pydantic import BaseModel, Field
from qdrant_client import QdrantClient
from qdrant_client.models import Distance, VectorParams, PointStruct
from typing import List, Dict, Any

from pydantic import BaseModel, Field
from typing import Dict, Any


llm = ChatOpenAI(model_name="gpt-4o")
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
qdrant = QdrantClient(":memory:")  # In-memory Qdrant instance

# Create collection
qdrant.create_collection(
    collection_name="opportunities",
    vectors_config=VectorParams(size=1536, distance=Distance.COSINE),
)

class State(BaseModel):
    file_path: str
    document_processed: str = ""
    opportunity_evaluation: Dict[str, Any] = Field(default_factory=dict)
    next_action: Dict[str, Any] = Field(default_factory=dict)

    def dict_representation(self) -> Dict[str, Any]:
        return {
            "file_path": self.file_path,
            "document_processed": self.document_processed,
            "opportunity_evaluation": self.opportunity_evaluation,
            "next_action": self.next_action
        }

async def prep_opportunity_review(session_state):
    file_path = prep_document()            
    structured_results = run_analysis(file_path)
    opportunity_review_report = create_opportunity_review_report(structured_results)
    session_state.opportunity_review_results = structured_results
    session_state.opportunity_review_report = opportunity_review_report
    

def prep_document():
    file_path = "data/HSBC Opportunity Information.docx"
    path = Path(file_path)

    if path.exists():
        if path.is_file():
            print(f"File found: {path}")
            print(f"File size: {path.stat().st_size / 1024:.2f} KB")
            print(f"Last modified: {path.stat().st_mtime}")
            print("File is ready for processing.")
            if os.access(path, os.R_OK):
                print("File is readable.")
            else:
                print("Warning: File exists but may not be readable. Check permissions.")
        else:
            print(f"Error: {path} exists but is not a file. It might be a directory.")
    else:
        print(f"Error: File not found at {path}")
        print("Please check the following:")
        print("1. Ensure the file path is correct.")
        print("2. Verify that the file exists in the specified location.")
        print("3. Check if you have the necessary permissions to access the file.")

        parent = path.parent
        if not parent.exists():
            print(f"Note: The directory {parent} does not exist.")
        elif not parent.is_dir():
            print(f"Note: {parent} exists but is not a directory.")

    file_path_for_processing = str(path)
    return file_path_for_processing

def load_and_chunk_document(file_path: str) -> List[Document]:
    """Load and chunk the document based on file type."""
    if not os.path.exists(file_path):
        raise FileNotFoundError(f"File not found: {file_path}")
    
    _, file_extension = os.path.splitext(file_path.lower())
    
    if file_extension == '.csv':
        loader = CSVLoader(file_path)
    elif file_extension == '.pdf':
        loader = PyPDFLoader(file_path)
    elif file_extension == '.docx':
        loader = Docx2txtLoader(file_path)
    else:
        raise ValueError(f"Unsupported file type: {file_extension}")
    
    documents = loader.load()
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
    return text_splitter.split_documents(documents)

def agent_1(file_path: str) -> str:
    """Agent 1: Load, chunk, embed, and store document in Qdrant."""
    try:
        chunks = load_and_chunk_document(file_path)
        points = []
        for i, chunk in enumerate(chunks):
            vector = embeddings.embed_query(chunk.page_content)
            points.append(PointStruct(id=i, vector=vector, payload={"text": chunk.page_content}))
        
        qdrant.upsert(
            collection_name="opportunities",
            points=points
        )
        return f"Document processed and stored in Qdrant. {len(chunks)} chunks created."
    except Exception as e:
        print(f"Error in agent_1: {str(e)}")
        return f"Error processing document: {str(e)}"
    
def agent_2() -> Dict[str, Any]:
    """Agent 2: Evaluate opportunity based on MEDDIC criteria."""
    try:
        results = qdrant.scroll(collection_name="opportunities", limit=100)
        if not results or len(results[0]) == 0:
            raise ValueError("No documents found in Qdrant")

        full_text = " ".join([point.payload.get("text", "") for point in results[0]])
        
        meddic_template = """
        Analyze the following opportunity information using the MEDDIC sales methodology:

        {opportunity_info}

        Assign an overall opportunity score (1-100) with 100 means that the opportunity is a sure win.

        Provide a Summary of the opportunity.

        Evaluate the opportunity based on each MEDDIC criterion and assign a score for each criterion:
        1. Metrics
        2. Economic Buyer
        3. Decision Criteria
        4. Decision Process
        5. Identify Pain
        6. Champion

        Format your response as follows:
        Summary: [Opportunity Summary]
        Score: [Overall Opportunity Score between 1 to 100 based on MEDDIC criteria]
        MEDDIC Evaluation:
        - Metrics: [Score on Metrics, Evaluation on Metrics criterion]
        - Economic Buyer: [Score on Economic Buyer, Evaluation on Economic Buyer criterion]
        - Decision Criteria: [Score on Decision Criteria, Evaluation on Decision Criteria criterion]
        - Decision Process: [Score on Decision Process, Evaluation on Decision Process criterion]
        - Identify Pain: [Score on Identify Pain, Evaluation on Identify Pain criterion]
        - Champion: [Score on Champion, Evaluation on Champion criterion]
        """

        meddic_prompt = PromptTemplate(template=meddic_template, input_variables=["opportunity_info"])
        meddic_chain = meddic_prompt | llm
        
        response = meddic_chain.invoke({"opportunity_info": full_text})
        
        if isinstance(response, AIMessage):
            response_content = response.content
        elif isinstance(response, str):
            response_content = response
        else:
            raise ValueError(f"Unexpected response type: {type(response)}")
        
        # Parse the response content
        lines = response_content.split('\n')
        summary = next((line.split('Summary:')[1].strip() for line in lines if line.startswith('Summary:')), 'N/A')
        score = next((int(line.split('Score:')[1].strip()) for line in lines if line.startswith('Score:')), 0)
        meddic_eval = {}
        current_criterion = None
        for line in lines:
            if line.strip().startswith('-'):
                parts = line.split(':', 1)
                if len(parts) == 2:
                    current_criterion = parts[0].strip('- ')
                    meddic_eval[current_criterion] = parts[1].strip()
            elif current_criterion and line.strip():
                meddic_eval[current_criterion] += ' ' + line.strip()

        return {
            'summary': summary,
            'score': score,
            'meddic_evaluation': meddic_eval
        }

    except Exception as e:
        print(f"Error in agent_2: {str(e)}")
        return {
            'summary': "Error occurred during evaluation",
            'score': 0,
            'meddic_evaluation': str(e)
        }
    
def agent_3(meddic_evaluation: Dict[str, Any]) -> Dict[str, Any]:
    """Agent 3: Suggest next best action and talking points."""
    try:
        next_action_template = """
        Based on the following MEDDIC evaluation of an opportunity:

        {meddic_evaluation}

        Suggest the next best action for the upcoming customer meeting and provide the top 3 talking points.
        Format your response as follows:
        Next Action: [Your suggested action]
        Talking Points:
        1. [First talking point]
        2. [Second talking point]
        3. [Third talking point]
        """

        next_action_prompt = PromptTemplate(template=next_action_template, input_variables=["meddic_evaluation"])
        next_action_chain = next_action_prompt | llm
        
        response = next_action_chain.invoke({"meddic_evaluation": json.dumps(meddic_evaluation)})
        
        if isinstance(response, AIMessage):
            response_content = response.content
        elif isinstance(response, str):
            response_content = response
        else:
            raise ValueError(f"Unexpected response type: {type(response)}")
        
        # Parse the response content
        lines = response_content.split('\n')
        next_action = next((line.split('Next Action:')[1].strip() for line in lines if line.startswith('Next Action:')), 'N/A')
        talking_points = [line.split('.')[1].strip() for line in lines if line.strip().startswith(('1.', '2.', '3.'))]

        return {
            'next_action': next_action,
            'talking_points': talking_points
        }
    except Exception as e:
        print(f"Error in agent_3: {str(e)}")
        return {
            'next_action': "Error occurred while suggesting next action",
            'talking_points': [str(e)]
        }
    
def process_document(state: State) -> State:
    print("Agent 1: Processing document...")
    file_path = state.file_path
    result = agent_1(file_path)
    return State(file_path=state.file_path, document_processed=result)

def evaluate_opportunity(state: State) -> State:
    print("Agent 2: Evaluating opportunity...")
    result = agent_2()
    return State(file_path=state.file_path, document_processed=state.document_processed, opportunity_evaluation=result)

def suggest_next_action(state: State) -> State:
    print("Agent 3: Suggesting next actions...")
    result = agent_3(state.opportunity_evaluation)
    return State(file_path=state.file_path, document_processed=state.document_processed, opportunity_evaluation=state.opportunity_evaluation, next_action=result)

def define_graph() -> StateGraph:
    workflow = StateGraph(State)
    
    workflow.add_node("process_document", process_document)
    workflow.add_node("evaluate_opportunity", evaluate_opportunity)
    workflow.add_node("suggest_next_action", suggest_next_action)
    
    workflow.set_entry_point("process_document")
    workflow.add_edge("process_document", "evaluate_opportunity")
    workflow.add_edge("evaluate_opportunity", "suggest_next_action")
    
    return workflow


def run_analysis(file_path: str) -> Dict[str, Any]:
    if not os.path.exists(file_path):
        return {"error": f"File not found: {file_path}"}
    
    graph = define_graph()
    initial_state = State(file_path=file_path)
    
    try:
        app = graph.compile()
        final_state = app.invoke(initial_state)
        
        # Convert the final state to a dictionary manually
        structured_results = {
            "file_path": final_state["file_path"],
            "document_processed": final_state["document_processed"],
            "opportunity_evaluation": final_state["opportunity_evaluation"],
            "next_action": final_state["next_action"]
        }
        
        # Print a summary of the results
        print("\n--- Analysis Results ---")
        print(f"Document Processing: {'Successful' if 'Error' not in structured_results['document_processed'] else 'Failed'}")
        print(f"Details: {structured_results['document_processed']}")
        
        if isinstance(structured_results['opportunity_evaluation'], dict):
            print("\nOpportunity Evaluation:")
            print(f"Summary: {structured_results['opportunity_evaluation'].get('summary', 'N/A')}")
            print(f"Score: {structured_results['opportunity_evaluation'].get('score', 'N/A')}")
            print("MEDDIC Evaluation:")
            for criterion, evaluation in structured_results['opportunity_evaluation'].get('meddic_evaluation', {}).items():
                print(f"{criterion}: {evaluation}")
        else:
            print("\nOpportunity Evaluation:")
            print(f"Error: {structured_results['opportunity_evaluation']}")
        
        if isinstance(structured_results['next_action'], dict):
            print("\nNext Action:")
            print(f"Action: {structured_results['next_action'].get('next_action', 'N/A')}")
            print("Talking Points:")
            for i, point in enumerate(structured_results['next_action'].get('talking_points', []), 1):
                print(f"  {i}. {point}")
        else:
            print("\nNext Action:")
            print(f"Error: {structured_results['next_action']}")
        
        return structured_results
    
    except Exception as e:
        print(f"An error occurred during analysis: {str(e)}")
        return {"error": str(e)}

def create_opportunity_review_report(structured_results):
    opportunity_review_report = ""
    opportunity_review_report += "**Analysis Results**\n\n"
    if 'Error' in structured_results['document_processed']:
        opportunity_review_report += f"Opportunity Analysis Failed\n"

    else:
        if isinstance(structured_results['opportunity_evaluation'], dict):
            opportunity_review_report += f"**Summary:** {structured_results['opportunity_evaluation'].get('summary', 'N/A')}\n\n"
            opportunity_review_report += f"**Score:** {structured_results['opportunity_evaluation'].get('score', 'N/A')}\n\n"
            opportunity_review_report += "**MEDDIC Evaluation:**\n\n"
            for criterion, evaluation in structured_results['opportunity_evaluation'].get('meddic_evaluation', {}).items():
                opportunity_review_report += f"**{criterion}:** {evaluation}\n"
        
        if isinstance(structured_results['next_action'], dict):
            opportunity_review_report += "\n\n**Next Steps**\n\n"
            opportunity_review_report += f"{structured_results['next_action'].get('next_action', 'N/A')}\n\n"
            opportunity_review_report += "**Talking Points:**\n\n"
            for i, point in enumerate(structured_results['next_action'].get('talking_points', []), 1):
                opportunity_review_report += f"  {i}. {point}\n"
    file_path = "reports/HSBC Opportunity Review Report.md"
    save_md_file(file_path, opportunity_review_report)
    return opportunity_review_report

def save_md_file(file_path, file_content):
    try:
        if os.path.exists(file_path):
            os.remove(file_path)
            print(f"Existing file deleted: {file_path}")
        
        with open(file_path, 'w', encoding='utf-8') as md_file:
            md_file.write(file_content)
        print(f"File saved successfully: {file_path}")
    except PermissionError:
        print(f"Permission denied when trying to delete or save file: {file_path}")       
    
    return None