File size: 5,249 Bytes
234eac0
 
0614fbf
234eac0
 
 
 
 
 
0614fbf
234eac0
 
0614fbf
 
 
 
aba4ee7
0614fbf
0fbd1a9
 
 
234eac0
 
0614fbf
 
 
 
234eac0
 
 
 
 
 
 
 
 
 
 
 
 
aba4ee7
0614fbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fbd1a9
 
 
 
 
 
 
 
 
 
 
234eac0
 
4d94c46
234eac0
f90c6bd
4d94c46
1aaad7e
234eac0
 
 
 
 
 
 
 
 
 
0fbd1a9
234eac0
f90c6bd
 
 
 
 
05479f1
aba4ee7
234eac0
0614fbf
 
 
 
cbe98ad
0614fbf
 
 
 
 
 
 
cbe98ad
0614fbf
cbe98ad
 
0614fbf
 
 
 
 
 
cbe98ad
0614fbf
05479f1
cbe98ad
 
 
 
0614fbf
e1afdac
234eac0
 
 
 
0614fbf
 
 
234eac0
 
 
0614fbf
 
 
234eac0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os
from chainlit.types import AskFileResponse

from aimakerspace.openai_utils.prompts import (
    UserRolePrompt,
    SystemRolePrompt,
    AssistantRolePrompt,
)
from aimakerspace.openai_utils.embedding import EmbeddingModel
from aimakerspace.vectordatabase import VectorDatabase
from aimakerspace.openai_utils.chatmodel import ChatOpenAI
import chainlit as cl
from richard.text_utils import FileLoader
from richard.pipeline import RetrievalAugmentedQAPipeline
# from richard.vector_database import QdrantDatabase
from qdrant_client import QdrantClient
from qdrant_client.models import VectorParams

def process_file(file, use_rct): 
    fileLoader = FileLoader()
    return fileLoader.load_file(file, use_rct)

system_template = """\
Use the following context to answer a users question. 
If you cannot find the answer in the context, say you don't know the answer. 
The context contains the text from a document. Refer to it as the document not the context.
"""
system_role_prompt = SystemRolePrompt(system_template)

user_prompt_template = """\
Context:
{context}

Question:
{question}
"""
user_role_prompt = UserRolePrompt(user_prompt_template)

@cl.on_chat_start
async def on_chat_start():
    # get user inputs
    res = await cl.AskActionMessage(
        content="Do you want to use Qdrant?",
        actions=[
            cl.Action(name="yes", value="yes", label="βœ… Yes"),
            cl.Action(name="no", value="no", label="❌ No"),
        ],
    ).send()
    use_qdrant = False
    use_qdrant_type = "Local"
    if res and res.get("value") == "yes":
        use_qdrant = True
        local_res = await cl.AskActionMessage(
                content="Do you want to use local or cloud?",
                actions=[
                    cl.Action(name="Local", value="Local", label="βœ… Local"),
                    cl.Action(name="Cloud", value="Cloud", label="❌ Cloud"),
                ],
            ).send()
        if local_res and local_res.get("value") == "Cloud":
            use_qdrant_type = "Cloud"
        msg = cl.Message(
            content=f"Sorry - the Qdrant processing has been temporarily disconnected"
        )
        await msg.send()
        use_qdrant = False
    use_rct = False
    res = await cl.AskActionMessage(
        content="Do you want to use RecursiveCharacterTextSplitter?",
        actions=[
            cl.Action(name="yes", value="yes", label="βœ… Yes"),
            cl.Action(name="no", value="no", label="❌ No"),
        ],
    ).send()
    if res and res.get("value") == "yes":
        use_rct = True
    
    files = None
    # Wait for the user to upload a file
    while not files:
        files = await cl.AskFileMessage(
            content="Please upload a .txt or .pdf file to begin processing!",
            accept=["text/plain", "application/pdf"],
            max_size_mb=2,
            timeout=180,
        ).send()

    file = files[0]

    msg = cl.Message(
        content=f"Processing `{file.name}`...", disable_human_feedback=True
    )
    await msg.send()

    texts = process_file(file, use_rct)

    msg = cl.Message(
        content=f"Resulted in {len(texts)} chunks", disable_human_feedback=True
    )
    await msg.send()

    # decide if to use the dict vector store of the Qdrant vector store
    
    # Create a dict vector store
    if use_qdrant == False:
        vector_db = VectorDatabase()
        vector_db = await vector_db.abuild_from_list(texts)
    else:
        embedding_model = EmbeddingModel()
        if use_qdrant_type == "Local":
            qdrant_client = QdrantClient(location=":memory:")
            vector_params = VectorParams(
                size=1536,  # vector size 
                distance="Cosine"  # distance metric
            )
            qdrant_client.recreate_collection(
                collection_name="my_collection",
                vectors_config={"default": vector_params},
            )

            from richard.vector_database import QdrantDatabase
            vector_db = QdrantDatabase(
                qdrant_client=qdrant_client,
                collection_name="my_collection",
                embedding_model=embedding_model 
            )

            vector_db = await vector_db.abuild_from_list(texts)
        
    msg = cl.Message(
        content=f"The Vector store has been created", disable_human_feedback=True
    )
    await msg.send()

    chat_openai = ChatOpenAI()

    # Create a chain
    retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(
        vector_db_retriever=vector_db,
        llm=chat_openai,
        system_role_prompt=system_role_prompt,
        user_role_prompt=user_role_prompt
    )
    
    # Let the user know that the system is ready
    msg.content = f"Processing `{file.name}` is complete."
    await msg.update()
    msg.content = f"You can now ask questions about `{file.name}`."
    await msg.update()
    cl.user_session.set("chain", retrieval_augmented_qa_pipeline)


@cl.on_message
async def main(message):
    chain = cl.user_session.get("chain")

    msg = cl.Message(content="")
    result = await chain.arun_pipeline(message.content)

    async for stream_resp in result["response"]:
        await msg.stream_token(stream_resp)

    await msg.send()