File size: 5,668 Bytes
234eac0 cbe98ad 234eac0 8dd79e8 234eac0 e1afdac 234eac0 f4ce1d6 234eac0 ad0431b 234eac0 ad0431b 234eac0 f4ce1d6 ad0431b f4ce1d6 234eac0 cbe98ad 234eac0 4d94c46 234eac0 f90c6bd 4d94c46 1aaad7e 234eac0 f90c6bd 234eac0 05479f1 cbe98ad 234eac0 05479f1 cbe98ad 05479f1 cbe98ad 05479f1 cbe98ad e1afdac 234eac0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import os
from typing import List
from chainlit.types import AskFileResponse
from aimakerspace.text_utils import CharacterTextSplitter, TextFileLoader
from aimakerspace.openai_utils.prompts import (
UserRolePrompt,
SystemRolePrompt,
AssistantRolePrompt,
)
from aimakerspace.openai_utils.embedding import EmbeddingModel
from aimakerspace.vectordatabase import VectorDatabase, QdrantDatabase
from aimakerspace.openai_utils.chatmodel import ChatOpenAI
import chainlit as cl
import fitz
system_template = """\
Use the following context to answer a users question. If you cannot find the answer in the context, say you don't know the answer."""
system_role_prompt = SystemRolePrompt(system_template)
user_prompt_template = """\
Context:
{context}
Question:
{question}
"""
user_role_prompt = UserRolePrompt(user_prompt_template)
class RetrievalAugmentedQAPipeline:
def __init__(self, llm, vector_db_retriever: VectorDatabase) -> None:
self.llm = llm
self.vector_db_retriever = vector_db_retriever
async def arun_pipeline(self, user_query: str):
context_list = self.vector_db_retriever.search_by_text(user_query, k=4)
context_prompt = ""
for context in context_list:
context_prompt += context[0] + "\n"
formatted_system_prompt = system_role_prompt.create_message()
formatted_user_prompt = user_role_prompt.create_message(question=user_query, context=context_prompt)
async def generate_response():
async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]):
yield chunk
return {"response": generate_response(), "context": context_list}
text_splitter = CharacterTextSplitter()
def process_text_file(file: AskFileResponse):
import tempfile
file_extension = os.path.splitext(file.name)[1].lower()
with tempfile.NamedTemporaryFile(mode="wb", delete=False, suffix=file_extension) as temp_file:
temp_file_path = temp_file.name
temp_file.write(file.content)
if file_extension == ".txt":
with open(temp_file_path, "r", encoding="utf-8") as f:
text_loader = TextFileLoader(temp_file_path)
documents = text_loader.load_documents()
texts = text_splitter.split_texts(documents)
elif file_extension == ".pdf":
pdf_document = fitz.open(temp_file_path)
documents = []
for page_num in range(len(pdf_document)):
page = pdf_document.load_page(page_num)
text = page.get_text()
documents.append(text)
texts = text_splitter.split_texts(documents)
else:
raise ValueError("Unsupported file type")
return texts
@cl.on_chat_start
async def on_chat_start():
files = None
# Wait for the user to upload a file
while not files:
files = await cl.AskFileMessage(
content="Please upload a .txt or .pdf file to begin processing!",
accept=["text/plain", "application/pdf"],
max_size_mb=2,
timeout=180,
).send()
file = files[0]
msg = cl.Message(
content=f"Processing `{file.name}`...", disable_human_feedback=True
)
await msg.send()
# load the file
texts = process_text_file(file)
msg = cl.Message(
content=f"Resulted in {len(texts)} chunks", disable_human_feedback=True
)
await msg.send()
print(f"Processing {len(texts)} text chunks")
# decide if to use the dict vector store of the Qdrant vector store
use_qdrant = True
from qdrant_client import QdrantClient
from qdrant_client.http.models import VectorParams, Distance
# Create a dict vector store
if use_qdrant:
embedding_model = EmbeddingModel()
qdrant_client = QdrantClient(
url='https://6b3eac94-adfe-42cb-98f8-9f068538243c.europe-west3-0.gcp.cloud.qdrant.io:6333', # Replace with your cluster URL
api_key='YrnApyEfdNAt41N7WkcZwjhjKqiIQQbXHBtzk_04guNyRLa83J0hOw' # Replace with your API key
)
vectors_config = {
"default": VectorParams(size=1536, distance="Cosine") # Adjust size as per your model's output
}
if not qdrant_client.collection_exists("my_collection"):
qdrant_client.create_collection(
collection_name="my_collection",
vectors_config=vectors_config
)
vector_db = QdrantDatabase(
qdrant_client=qdrant_client,
collection_name="my_collection",
embedding_model=embedding_model # Replace with your embedding model instance
)
vector_db = await vector_db.abuild_from_list(texts)
else:
vector_db = VectorDatabase()
vector_db = await vector_db.abuild_from_list(texts)
msg = cl.Message(
content=f"The Vector store has been created", disable_human_feedback=True
)
await msg.send()
chat_openai = ChatOpenAI()
# Create a chain
retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(
vector_db_retriever=vector_db,
llm=chat_openai
)
# Let the user know that the system is ready
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
await msg.update()
cl.user_session.set("chain", retrieval_augmented_qa_pipeline)
@cl.on_message
async def main(message):
chain = cl.user_session.get("chain")
msg = cl.Message(content="")
result = await chain.arun_pipeline(message.content)
async for stream_resp in result["response"]:
await msg.stream_token(stream_resp)
await msg.send() |