File size: 4,142 Bytes
234eac0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4ce1d6
 
 
 
234eac0
 
 
 
f4ce1d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
234eac0
 
 
 
 
 
 
 
4d94c46
234eac0
f4ce1d6
4d94c46
1aaad7e
234eac0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import os
from typing import List
from chainlit.types import AskFileResponse
from aimakerspace.text_utils import CharacterTextSplitter, TextFileLoader
from aimakerspace.openai_utils.prompts import (
    UserRolePrompt,
    SystemRolePrompt,
    AssistantRolePrompt,
)
from aimakerspace.openai_utils.embedding import EmbeddingModel
from aimakerspace.vectordatabase import VectorDatabase
from aimakerspace.openai_utils.chatmodel import ChatOpenAI
import chainlit as cl

system_template = """\
Use the following context to answer a users question. If you cannot find the answer in the context, say you don't know the answer."""
system_role_prompt = SystemRolePrompt(system_template)

user_prompt_template = """\
Context:
{context}

Question:
{question}
"""
user_role_prompt = UserRolePrompt(user_prompt_template)

class RetrievalAugmentedQAPipeline:
    def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None:
        self.llm = llm
        self.vector_db_retriever = vector_db_retriever

    async def arun_pipeline(self, user_query: str):
        context_list = self.vector_db_retriever.search_by_text(user_query, k=4)

        context_prompt = ""
        for context in context_list:
            context_prompt += context[0] + "\n"

        formatted_system_prompt = system_role_prompt.create_message()

        formatted_user_prompt = user_role_prompt.create_message(question=user_query, context=context_prompt)

        async def generate_response():
            async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]):
                yield chunk

        return {"response": generate_response(), "context": context_list}

text_splitter = CharacterTextSplitter()


def process_text_file(file: AskFileResponse):
    import tempfile
    import fitz 
    import os

    file_extension = os.path.splitext(file.name)[1].lower()

    with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".txt") as temp_file:
        temp_file_path = temp_file.name

    if file_extension == ".txt":
        with open(temp_file_path, "wb") as f:
            f.write(file.content)

        text_loader = TextFileLoader(temp_file_path)
        documents = text_loader.load_documents()
        texts = text_splitter.split_texts(documents)

    elif file_extension == ".pdf":
        pdf_document = fitz.open(temp_file_path)
        documents = []
        for page_num in range(len(pdf_document)):
            page = pdf_document.load_page(page_num)
            text = page.get_text()
            documents.append(text)
        texts = text_splitter.split_texts(documents)
    else:
        raise ValueError("Unsupported file type")
    
    return texts


@cl.on_chat_start
async def on_chat_start():
    files = None

    # Wait for the user to upload a file
    while not files:
        files = await cl.AskFileMessage(
            content="Please upload a .txt or .pdf file to begin!",
            accept=["text/plain", "application/pdf"],
            max_size_mb=2,
            timeout=180,
        ).send()

    file = files[0]

    msg = cl.Message(
        content=f"Processing `{file.name}`...", disable_human_feedback=True
    )
    await msg.send()

    # load the file
    texts = process_text_file(file)

    print(f"Processing {len(texts)} text chunks")

    # Create a dict vector store
    vector_db = VectorDatabase()
    vector_db = await vector_db.abuild_from_list(texts)
    
    chat_openai = ChatOpenAI()

    # Create a chain
    retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(
        vector_db_retriever=vector_db,
        llm=chat_openai
    )
    
    # Let the user know that the system is ready
    msg.content = f"Processing `{file.name}` done. You can now ask questions!"
    await msg.update()

    cl.user_session.set("chain", retrieval_augmented_qa_pipeline)


@cl.on_message
async def main(message):
    chain = cl.user_session.get("chain")

    msg = cl.Message(content="")
    result = await chain.arun_pipeline(message.content)

    async for stream_resp in result["response"]:
        await msg.stream_token(stream_resp)

    await msg.send()