Spaces:
Running
Running
File size: 5,533 Bytes
4792e15 4295c91 4792e15 a449bcc 4792e15 402ff0a 4295c91 a449bcc 4792e15 a56f739 4792e15 4295c91 4792e15 4295c91 4792e15 4295c91 4792e15 b2b8769 4792e15 daf2c08 4792e15 09e70d3 4295c91 4792e15 daf2c08 4792e15 edddc85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import torch
import gradio as gr
import yt_dlp as youtube_dl
from transformers import pipeline
from huggingface_hub import model_info
import re
import tempfile
import os
MODEL_NAME = "razhan/whisper-small-ckb"
BATCH_SIZE = 1
FILE_LIMIT_MB = 10
YT_LENGTH_LIMIT_S = 60 * 10
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(task="transcribe")
def transcribe(microphone, file_upload):
warn_output = ""
if (microphone is not None) and (file_upload is not None):
warn_output = (
"WARNING: You've uploaded an audio file and used the microphone. "
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
)
elif (microphone is None) and (file_upload is None):
return "ERROR: You have to either use the microphone or upload an audio file"
file = microphone if microphone is not None else file_upload
text = pipe(file)["text"]
return warn_output + text
def _return_yt_html_embed(yt_url):
if 'youtu.be' in yt_url:
video_id = yt_url.split('/')[-1].split('?')[0]
else:
video_id = yt_url.split("?v=")[-1].split('&')[0]
HTML_str = (
f'<center><iframe width="560" height="315" src="https://www.youtube.com/embed/{video_id}" '
'frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" '
'allowfullscreen></iframe></center>'
)
return HTML_str
def yt_transcribe(yt_url, task="transcribe", max_filesize=75.0, progress=gr.Progress()):
html_embed_str = _return_yt_html_embed(yt_url)
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "video.mp4")
download_yt_audio(yt_url, filepath)
with open(filepath, "rb") as f:
inputs = f.read()
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
start_time = time.time()
outputs = pipe(inputs, chunk_length_s=30, batch_size=BATCH_SIZE, generate_kwargs={"task": task, "language": "persian"}, return_timestamps=False)
exec_time = time.time() - start_time
logging.info(print(f"transcribe: {exec_time} sec."))
return html_embed_str, txt, exec_time
def download_yt_audio(yt_url, filename, progress=gr.Progress()):
if '&list' in yt_url:
yt_url = yt_url.split('&list')[0]
info_loader = youtube_dl.YoutubeDL()
try:
info = info_loader.extract_info(yt_url, download=False)
except youtube_dl.utils.DownloadError as err:
raise gr.Error(str(err))
file_length = info["duration_string"]
file_h_m_s = file_length.split(":")
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
if len(file_h_m_s) == 1:
file_h_m_s.insert(0, 0)
if len(file_h_m_s) == 2:
file_h_m_s.insert(0, 0)
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
if file_length_s > YT_LENGTH_LIMIT_S:
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
# ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
ydl_opts = {"outtmpl": filename, "format": "bestaudio/best"}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
try:
ydl.download([yt_url])
except youtube_dl.utils.ExtractorError as err:
raise gr.Error(str(err))
progress(1, desc="Video downloaded from YouTube!")
demo = gr.Blocks()
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="microphone", type="filepath"),
gr.Audio(sources="upload", type="filepath"),
],
outputs="text",
theme="huggingface",
title="Whisper Central Kurdish (Sorani) Demo: Transcribe Audio",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the fine-tuned"
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
" of arbitrary length."
),
allow_flagging="never",
)
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")],
outputs=["html",
gr.Textbox(
label="Output",
rtl=True,
show_copy_button=True,
),
gr.Text(label="Transcription Time")
],
theme="huggingface",
title="Whisper Central Kurdish (Sorani) Demo: Transcribe YouTube",
description=(
"Transcribe long-form YouTube videos with the click of a button! Demo uses the the fine-tuned checkpoint:"
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of"
" arbitrary length."
),
allow_flagging="never",
)
with demo:
gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])
demo.launch()
|