File size: 5,469 Bytes
4792e15
 
 
4295c91
 
4792e15
 
 
402ff0a
4295c91
 
4792e15
 
 
 
 
 
 
 
 
a56f739
4792e15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4295c91
 
 
 
 
4792e15
4295c91
 
 
4792e15
 
 
 
 
 
4295c91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4792e15
 
 
 
 
 
 
b2b8769
 
4792e15
 
 
daf2c08
4792e15
 
 
 
 
 
 
 
 
 
09e70d3
4295c91
 
 
 
 
 
 
 
4792e15
daf2c08
4792e15
 
 
 
 
 
 
 
 
 
 
edddc85
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import torch

import gradio as gr
import yt_dlp as youtube_dl

from transformers import pipeline
from huggingface_hub import model_info

MODEL_NAME = "razhan/whisper-small-ckb"
BATCH_SIZE = 1
FILE_LIMIT_MB = 10

device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
    task="automatic-speech-recognition",
    model=MODEL_NAME,
    chunk_length_s=30,
    device=device,
)

pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(task="transcribe")

def transcribe(microphone, file_upload):
    warn_output = ""
    if (microphone is not None) and (file_upload is not None):
        warn_output = (
            "WARNING: You've uploaded an audio file and used the microphone. "
            "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
        )

    elif (microphone is None) and (file_upload is None):
        return "ERROR: You have to either use the microphone or upload an audio file"

    file = microphone if microphone is not None else file_upload

    text = pipe(file)["text"]

    return warn_output + text


def _return_yt_html_embed(yt_url):
    if 'youtu.be' in yt_url:
        video_id = yt_url.split('/')[-1].split('?')[0]
    else:
        video_id = yt_url.split("?v=")[-1].split('&')[0]

    HTML_str = (
        f'<center><iframe width="560" height="315" src="https://www.youtube.com/embed/{video_id}" '
        'frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" '
        'allowfullscreen></iframe></center>'
    )
    return HTML_str





def yt_transcribe(yt_url, task="transcribe", max_filesize=75.0, progress=gr.Progress()):
    html_embed_str = _return_yt_html_embed(yt_url)

    with tempfile.TemporaryDirectory() as tmpdirname:
        filepath = os.path.join(tmpdirname, "video.mp4")
        download_yt_audio(yt_url, filepath)
        with open(filepath, "rb") as f:
            inputs = f.read()

    inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
    inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}



    start_time = time.time()
    outputs = pipe(inputs, chunk_length_s=30, batch_size=BATCH_SIZE, generate_kwargs={"task": task, "language": "persian"}, return_timestamps=False)
    exec_time = time.time() - start_time
    logging.info(print(f"transcribe: {exec_time} sec."))
    
    return html_embed_str,  txt, exec_time


def download_yt_audio(yt_url, filename, progress=gr.Progress()):
    if '&list' in yt_url:
        yt_url = yt_url.split('&list')[0]
         
    info_loader = youtube_dl.YoutubeDL()

    try:
        info = info_loader.extract_info(yt_url, download=False)
    except youtube_dl.utils.DownloadError as err:
        raise gr.Error(str(err))
    
    file_length = info["duration_string"]
    file_h_m_s = file_length.split(":")
    file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
    
    if len(file_h_m_s) == 1:
        file_h_m_s.insert(0, 0)
    if len(file_h_m_s) == 2:
        file_h_m_s.insert(0, 0)
    file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
    
    if file_length_s > YT_LENGTH_LIMIT_S:
        yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
        file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
        raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
    
    # ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
    ydl_opts = {"outtmpl": filename, "format": "bestaudio/best"}
    
    with youtube_dl.YoutubeDL(ydl_opts) as ydl:
        try:
            ydl.download([yt_url])
        except youtube_dl.utils.ExtractorError as err:
            raise gr.Error(str(err))
    progress(1, desc="Video downloaded from YouTube!")


demo = gr.Blocks()

mf_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(sources="microphone", type="filepath"),
        gr.Audio(sources="upload", type="filepath"),
    ],
    outputs="text",
    theme="huggingface",
    title="Whisper Central Kurdish‌ (Sorani) Demo: Transcribe Audio",
    description=(
        "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the fine-tuned"
        f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
        " of arbitrary length."
    ),
    allow_flagging="never",
)

yt_transcribe = gr.Interface(
    fn=yt_transcribe,
    inputs=[gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")],
    outputs=["html",
        gr.Textbox(
                label="Output",
                rtl=True,
                show_copy_button=True,
        ),
        gr.Text(label="Transcription Time")
        ],
    theme="huggingface",
    title="Whisper Central Kurdish‌ (Sorani) Demo: Transcribe YouTube",
    description=(
        "Transcribe long-form YouTube videos with the click of a button! Demo uses the the fine-tuned checkpoint:"
        f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of"
        " arbitrary length."
    ),
    allow_flagging="never",
)

with demo:
    gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])

demo.launch()