Spaces:
Running
on
Zero
Running
on
Zero
from dataclasses import dataclass | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import os | |
import math | |
import json | |
from glob import glob | |
from functools import partial | |
import torch | |
import torch.nn as nn | |
import torch.utils.checkpoint | |
import torch.nn.functional as F | |
import numpy as np | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.loaders import UNet2DConditionLoadersMixin | |
from diffusers.utils import BaseOutput, logging, is_torch_version | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.models.unet_2d_blocks import ( | |
CrossAttnDownBlock2D, | |
CrossAttnUpBlock2D, | |
DownBlock2D, | |
UNetMidBlock2DCrossAttn, | |
UNetMidBlock2DSimpleCrossAttn, | |
UpBlock2D, | |
get_down_block as gdb, | |
get_up_block as gub, | |
) | |
from diffusers.models.embeddings import ( | |
GaussianFourierProjection, | |
ImageHintTimeEmbedding, | |
ImageProjection, | |
ImageTimeEmbedding, | |
TextImageProjection, | |
TextImageTimeEmbedding, | |
TextTimeEmbedding, | |
TimestepEmbedding, | |
Timesteps, | |
) | |
from diffusers.models.activations import get_activation | |
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor, Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0 | |
from diffusers.models.resnet import Downsample2D, FirDownsample2D, FirUpsample2D, KDownsample2D, KUpsample2D, ResnetBlock2D, Upsample2D | |
from diffusers.models.transformer_2d import Transformer2DModel | |
from diffusers.models.dual_transformer_2d import DualTransformer2DModel | |
class CrossAttnDownBlock2DWithFlow(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
temb_channels: int, | |
flow_channels: int, # Added | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
transformer_layers_per_block: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
num_attention_heads=1, | |
cross_attention_dim=1280, | |
output_scale_factor=1.0, | |
downsample_padding=1, | |
add_downsample=True, | |
dual_cross_attention=False, | |
use_linear_projection=False, | |
only_cross_attention=False, | |
upcast_attention=False, | |
): | |
super().__init__() | |
resnets = [] | |
attentions = [] | |
flow_convs = [] | |
self.has_cross_attention = True | |
self.num_attention_heads = num_attention_heads | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
if not dual_cross_attention: | |
attentions.append( | |
Transformer2DModel( | |
num_attention_heads, | |
out_channels // num_attention_heads, | |
in_channels=out_channels, | |
num_layers=transformer_layers_per_block, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
) | |
) | |
else: | |
attentions.append( | |
DualTransformer2DModel( | |
num_attention_heads, | |
out_channels // num_attention_heads, | |
in_channels=out_channels, | |
num_layers=1, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
) | |
) | |
flow_convs.append( | |
nn.Conv2d( | |
flow_channels, out_channels, kernel_size=3, padding=1, bias=False, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
self.flow_convs = nn.ModuleList(flow_convs) | |
if add_downsample: | |
self.downsamplers = nn.ModuleList( | |
[ | |
Downsample2D( | |
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" | |
) | |
] | |
) | |
else: | |
self.downsamplers = None | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
additional_residuals=None, | |
flow: Optional[torch.FloatTensor] = None, # Added | |
): | |
output_states = () | |
blocks = list(zip(self.resnets, self.attentions, self.flow_convs)) | |
for i, (resnet, attn, flow_conv) in enumerate(blocks): | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
**ckpt_kwargs, | |
) | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(attn, return_dict=False), | |
hidden_states, | |
encoder_hidden_states, | |
None, # timestep | |
None, # class_labels | |
cross_attention_kwargs, | |
attention_mask, | |
encoder_attention_mask, | |
**ckpt_kwargs, | |
)[0] | |
else: | |
hidden_states = resnet(hidden_states, temb) | |
if flow is not None: | |
hidden_states = hidden_states + flow_conv(flow) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
)[0] | |
# apply additional residuals to the output of the last pair of resnet and attention blocks | |
if i == len(blocks) - 1 and additional_residuals is not None: | |
hidden_states = hidden_states + additional_residuals | |
output_states = output_states + (hidden_states,) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states) | |
output_states = output_states + (hidden_states,) | |
return hidden_states, output_states | |
class UNetMidBlock2DCrossAttnWithFlow(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
temb_channels: int, | |
flow_channels: int, # Added | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
transformer_layers_per_block: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
num_attention_heads=1, | |
output_scale_factor=1.0, | |
cross_attention_dim=1280, | |
dual_cross_attention=False, | |
use_linear_projection=False, | |
upcast_attention=False, | |
): | |
super().__init__() | |
self.has_cross_attention = True | |
self.num_attention_heads = num_attention_heads | |
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) | |
# there is always at least one resnet | |
resnets = [ | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
] | |
flow_convs = [ | |
nn.Conv2d( | |
flow_channels, in_channels, kernel_size=3, padding=1, bias=False, | |
) | |
] | |
attentions = [] | |
for _ in range(num_layers): | |
if not dual_cross_attention: | |
attentions.append( | |
Transformer2DModel( | |
num_attention_heads, | |
in_channels // num_attention_heads, | |
in_channels=in_channels, | |
num_layers=transformer_layers_per_block, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
use_linear_projection=use_linear_projection, | |
upcast_attention=upcast_attention, | |
) | |
) | |
else: | |
attentions.append( | |
DualTransformer2DModel( | |
num_attention_heads, | |
in_channels // num_attention_heads, | |
in_channels=in_channels, | |
num_layers=1, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
) | |
) | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
flow_convs.append( | |
nn.Conv2d( | |
flow_channels, in_channels, kernel_size=3, padding=1, bias=False, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
self.flow_convs = nn.ModuleList(flow_convs) | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
flow: Optional[torch.FloatTensor] = None, # Added | |
) -> torch.FloatTensor: | |
hidden_states = self.resnets[0](hidden_states, temb) | |
hidden_states = hidden_states + self.flow_convs[0](flow) | |
for attn, resnet, flow_conv in zip(self.attentions, self.resnets[1:], self.flow_convs[1:]): | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
)[0] | |
hidden_states = resnet(hidden_states, temb) | |
hidden_states = hidden_states + flow_conv(flow) | |
return hidden_states | |
class CrossAttnUpBlock2DWithFlow(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
prev_output_channel: int, | |
temb_channels: int, | |
flow_channels: int, # Added | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
transformer_layers_per_block: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
num_attention_heads=1, | |
cross_attention_dim=1280, | |
output_scale_factor=1.0, | |
add_upsample=True, | |
dual_cross_attention=False, | |
use_linear_projection=False, | |
only_cross_attention=False, | |
upcast_attention=False, | |
): | |
super().__init__() | |
resnets = [] | |
attentions = [] | |
flow_convs = [] | |
self.has_cross_attention = True | |
self.num_attention_heads = num_attention_heads | |
for i in range(num_layers): | |
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=resnet_in_channels + res_skip_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
if not dual_cross_attention: | |
attentions.append( | |
Transformer2DModel( | |
num_attention_heads, | |
out_channels // num_attention_heads, | |
in_channels=out_channels, | |
num_layers=transformer_layers_per_block, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention, | |
upcast_attention=upcast_attention, | |
) | |
) | |
else: | |
attentions.append( | |
DualTransformer2DModel( | |
num_attention_heads, | |
out_channels // num_attention_heads, | |
in_channels=out_channels, | |
num_layers=1, | |
cross_attention_dim=cross_attention_dim, | |
norm_num_groups=resnet_groups, | |
) | |
) | |
flow_convs.append( | |
nn.Conv2d( | |
flow_channels, out_channels, kernel_size=3, padding=1, bias=False, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
self.flow_convs = nn.ModuleList(flow_convs) | |
if add_upsample: | |
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) | |
else: | |
self.upsamplers = None | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | |
temb: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
upsample_size: Optional[int] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
flow: Optional[torch.FloatTensor] = None, # Added | |
): | |
for resnet, attn, flow_conv in zip(self.resnets, self.attentions, self.flow_convs): | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module, return_dict=None): | |
def custom_forward(*inputs): | |
if return_dict is not None: | |
return module(*inputs, return_dict=return_dict) | |
else: | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(resnet), | |
hidden_states, | |
temb, | |
**ckpt_kwargs, | |
) | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(attn, return_dict=False), | |
hidden_states, | |
encoder_hidden_states, | |
None, # timestep | |
None, # class_labels | |
cross_attention_kwargs, | |
attention_mask, | |
encoder_attention_mask, | |
**ckpt_kwargs, | |
)[0] | |
else: | |
hidden_states = resnet(hidden_states, temb) | |
hidden_states = hidden_states + flow_conv(flow) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
)[0] | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, upsample_size) | |
return hidden_states | |
def get_sin_cos_pos_embed(embed_dim: int, x: torch.Tensor): | |
bsz, _ = x.shape | |
x = x.reshape(-1)[:, None] | |
div_term = torch.exp(torch.arange(0, embed_dim, 2) * (-math.log(10000.0) / embed_dim)).to(x.device) | |
pos = x * div_term | |
pos = torch.cat([torch.sin(pos), torch.cos(pos)], dim=-1).reshape(bsz, -1) | |
return pos | |
def get_down_block( | |
with_concatenated_flow: bool = False, | |
*args, | |
**kwargs, | |
): | |
if not with_concatenated_flow or args[0] == "DownBlock2D": | |
kwargs.pop("flow_channels", None) | |
return gdb(*args, **kwargs) | |
elif args[0] == "CrossAttnDownBlock2D": | |
kwargs.pop("downsample_type", None) | |
kwargs.pop("attention_head_dim", None) | |
kwargs.pop("resnet_skip_time_act", None) | |
kwargs.pop("resnet_out_scale_factor", None) | |
kwargs.pop("cross_attention_norm", None) | |
return CrossAttnDownBlock2DWithFlow(*args[1:], **kwargs) | |
else: | |
raise ValueError(f"Unknown down block type: {args[0]}") | |
def get_up_block( | |
with_concatenated_flow: bool = False, | |
*args, | |
**kwargs, | |
): | |
if not with_concatenated_flow or args[0] == "UpBlock2D": | |
kwargs.pop("flow_channels", None) | |
return gub(*args, **kwargs) | |
elif args[0] == "CrossAttnUpBlock2D": | |
kwargs.pop("upsample_type", None) | |
kwargs.pop("attention_head_dim", None) | |
kwargs.pop("resnet_skip_time_act", None) | |
kwargs.pop("resnet_out_scale_factor", None) | |
kwargs.pop("cross_attention_norm", None) | |
return CrossAttnUpBlock2DWithFlow(*args[1:], **kwargs) | |
else: | |
raise ValueError(f"Unknown up block type: {args[0]}") | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
def avg_pool_nd(dims, *args, **kwargs): | |
""" | |
Create a 1D, 2D, or 3D average pooling module. | |
""" | |
if dims == 1: | |
return nn.AvgPool1d(*args, **kwargs) | |
elif dims == 2: | |
return nn.AvgPool2d(*args, **kwargs) | |
elif dims == 3: | |
return nn.AvgPool3d(*args, **kwargs) | |
raise ValueError(f"unsupported dimensions: {dims}") | |
def conv_nd(dims, *args, **kwargs): | |
""" | |
Create a 1D, 2D, or 3D convolution module. | |
""" | |
if dims == 1: | |
return nn.Conv1d(*args, **kwargs) | |
elif dims == 2: | |
return nn.Conv2d(*args, **kwargs) | |
elif dims == 3: | |
return nn.Conv3d(*args, **kwargs) | |
raise ValueError(f"unsupported dimensions: {dims}") | |
class Downsample(nn.Module): | |
""" | |
A downsampling layer with an optional convolution. | |
:param channels: channels in the inputs and outputs. | |
:param use_conv: a bool determining if a convolution is applied. | |
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
downsampling occurs in the inner-two dimensions. | |
""" | |
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.dims = dims | |
stride = 2 if dims != 3 else (1, 2, 2) | |
if use_conv: | |
self.op = conv_nd( | |
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding | |
) | |
else: | |
assert self.channels == self.out_channels | |
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
return self.op(x) | |
class ResnetBlock(nn.Module): | |
def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True): | |
super().__init__() | |
ps = ksize // 2 | |
if in_c != out_c or sk == False: | |
self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps) | |
else: | |
# print('n_in') | |
self.in_conv = None | |
self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1) | |
self.act = nn.ReLU() | |
self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps) | |
if sk == False: | |
# self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps) # edit by zhouxiawang | |
self.skep = nn.Conv2d(out_c, out_c, ksize, 1, ps) | |
else: | |
self.skep = None | |
self.down = down | |
if self.down == True: | |
self.down_opt = Downsample(in_c, use_conv=use_conv) | |
def forward(self, x): | |
if self.down == True: | |
x = self.down_opt(x) | |
if self.in_conv is not None: # edit | |
x = self.in_conv(x) | |
h = self.block1(x) | |
h = self.act(h) | |
h = self.block2(h) | |
if self.skep is not None: | |
return h + self.skep(x) | |
else: | |
return h + x | |
class Adapter(nn.Module): | |
def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64, ksize=3, sk=False, use_conv=True): | |
super(Adapter, self).__init__() | |
self.unshuffle = nn.PixelUnshuffle(16) | |
self.channels = channels | |
self.nums_rb = nums_rb | |
self.body = [] | |
for i in range(len(channels)): | |
for j in range(nums_rb): | |
if (i != 0) and (j == 0): | |
self.body.append( | |
ResnetBlock(channels[i - 1], channels[i], down=True, ksize=ksize, sk=sk, use_conv=use_conv)) | |
else: | |
self.body.append( | |
ResnetBlock(channels[i], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv)) | |
self.body = nn.ModuleList(self.body) | |
self.conv_in = nn.Conv2d(cin * 16 * 16, channels[0], 3, 1, 1) | |
def forward(self, x): | |
# unshuffle | |
x = self.unshuffle(x) | |
# extract features | |
features = [] | |
x = self.conv_in(x) | |
for i in range(len(self.channels)): | |
for j in range(self.nums_rb): | |
idx = i * self.nums_rb + j | |
x = self.body[idx](x) | |
features.append(x) | |
return features | |
class OneSidedAttnProcessor: | |
r""" | |
Processor for performing attention-related computations where the key and value are always from the upper half batch | |
""" | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None, | |
): | |
assert encoder_hidden_states is None | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
assert batch_size % 2 == 0, "batch size must be even" | |
half_batch_size = batch_size // 2 | |
hidden_states_1, hidden_states_2 = hidden_states.chunk(2, dim=0) | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, half_batch_size) | |
if attn.group_norm is not None: | |
hidden_states_1 = attn.group_norm(hidden_states_1.transpose(1, 2)).transpose(1, 2) | |
hidden_states_2 = attn.group_norm(hidden_states_2.transpose(1, 2)).transpose(1, 2) | |
query_1 = attn.to_q(hidden_states_1) | |
query_2 = attn.to_q(hidden_states_2) | |
key = attn.to_k(hidden_states_1) | |
value = attn.to_v(hidden_states_1) | |
query = torch.cat([query_1, query_2], dim=0) | |
key = torch.cat([key, key], dim=0) | |
value = torch.cat([value, value], dim=0) | |
query = attn.head_to_batch_dim(query) | |
key = attn.head_to_batch_dim(key) | |
value = attn.head_to_batch_dim(value) | |
attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
hidden_states = torch.bmm(attention_probs, value) | |
hidden_states = attn.batch_to_head_dim(hidden_states) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
class UNet2DDragConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin): | |
r""" | |
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample | |
shaped output. | |
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented | |
for all models (such as downloading or saving). | |
Parameters: | |
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`): | |
Height and width of input/output sample. | |
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample. | |
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output. | |
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample. | |
flip_sin_to_cos (`bool`, *optional*, defaults to `False`): | |
Whether to flip the sin to cos in the time embedding. | |
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding. | |
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): | |
The tuple of downsample blocks to use. | |
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`): | |
Block type for middle of UNet, it can be either `UNetMidBlock2DCrossAttn` or | |
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped. | |
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`): | |
The tuple of upsample blocks to use. | |
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`): | |
Whether to include self-attention in the basic transformer blocks, see | |
[`~models.attention.BasicTransformerBlock`]. | |
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): | |
The tuple of output channels for each block. | |
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. | |
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution. | |
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block. | |
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. | |
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization. | |
If `None`, normalization and activation layers is skipped in post-processing. | |
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization. | |
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280): | |
The dimension of the cross attention features. | |
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1): | |
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for | |
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`], | |
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`]. | |
encoder_hid_dim (`int`, *optional*, defaults to None): | |
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim` | |
dimension to `cross_attention_dim`. | |
encoder_hid_dim_type (`str`, *optional*, defaults to `None`): | |
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text | |
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`. | |
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads. | |
num_attention_heads (`int`, *optional*): | |
The number of attention heads. If not defined, defaults to `attention_head_dim` | |
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config | |
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`. | |
class_embed_type (`str`, *optional*, defaults to `None`): | |
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`, | |
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`. | |
addition_embed_type (`str`, *optional*, defaults to `None`): | |
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or | |
"text". "text" will use the `TextTimeEmbedding` layer. | |
addition_time_embed_dim: (`int`, *optional*, defaults to `None`): | |
Dimension for the timestep embeddings. | |
num_class_embeds (`int`, *optional*, defaults to `None`): | |
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing | |
class conditioning with `class_embed_type` equal to `None`. | |
time_embedding_type (`str`, *optional*, defaults to `positional`): | |
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`. | |
time_embedding_dim (`int`, *optional*, defaults to `None`): | |
An optional override for the dimension of the projected time embedding. | |
time_embedding_act_fn (`str`, *optional*, defaults to `None`): | |
Optional activation function to use only once on the time embeddings before they are passed to the rest of | |
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`. | |
timestep_post_act (`str`, *optional*, defaults to `None`): | |
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`. | |
time_cond_proj_dim (`int`, *optional*, defaults to `None`): | |
The dimension of `cond_proj` layer in the timestep embedding. | |
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer. | |
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer. | |
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when | |
`class_embed_type="projection"`. Required when `class_embed_type="projection"`. | |
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time | |
embeddings with the class embeddings. | |
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`): | |
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If | |
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the | |
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False` | |
otherwise. | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
sample_size: Optional[int] = None, | |
in_channels: int = 4, | |
flow_channels: int = 3, | |
out_channels: int = 4, | |
center_input_sample: bool = False, | |
flip_sin_to_cos: bool = True, | |
freq_shift: int = 0, | |
down_block_types: Tuple[str] = ( | |
"CrossAttnDownBlock2D", | |
"CrossAttnDownBlock2D", | |
"CrossAttnDownBlock2D", | |
"DownBlock2D", | |
), | |
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn", | |
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"), | |
only_cross_attention: Union[bool, Tuple[bool]] = False, | |
block_out_channels: Tuple[int] = (320, 640, 1280, 1280), | |
layers_per_block: Union[int, Tuple[int]] = 2, | |
downsample_padding: int = 1, | |
mid_block_scale_factor: float = 1, | |
act_fn: str = "silu", | |
norm_num_groups: Optional[int] = 32, | |
norm_eps: float = 1e-5, | |
cross_attention_dim: Union[int, Tuple[int]] = 1280, | |
transformer_layers_per_block: Union[int, Tuple[int]] = 1, | |
encoder_hid_dim: Optional[int] = None, | |
encoder_hid_dim_type: Optional[str] = None, | |
attention_head_dim: Union[int, Tuple[int]] = 8, | |
num_attention_heads: Optional[Union[int, Tuple[int]]] = None, | |
dual_cross_attention: bool = False, | |
use_linear_projection: bool = False, | |
class_embed_type: Optional[str] = None, | |
addition_embed_type: Optional[str] = None, | |
addition_time_embed_dim: Optional[int] = None, | |
num_class_embeds: Optional[int] = None, | |
upcast_attention: bool = False, | |
resnet_time_scale_shift: str = "default", | |
resnet_skip_time_act: bool = False, | |
resnet_out_scale_factor: int = 1.0, | |
time_embedding_type: str = "positional", | |
time_embedding_dim: Optional[int] = None, | |
time_embedding_act_fn: Optional[str] = None, | |
timestep_post_act: Optional[str] = None, | |
time_cond_proj_dim: Optional[int] = None, | |
conv_in_kernel: int = 3, | |
conv_out_kernel: int = 3, | |
projection_class_embeddings_input_dim: Optional[int] = None, | |
class_embeddings_concat: bool = False, | |
mid_block_only_cross_attention: Optional[bool] = None, | |
cross_attention_norm: Optional[str] = None, | |
addition_embed_type_num_heads=64, | |
# Added | |
clip_embedding_dim: int = 1024, | |
num_clip_in: int = 25, | |
dragging_embedding_dim: int = 256, | |
use_drag_tokens: bool = True, | |
single_drag_token: bool = False, | |
num_drags: int = 10, | |
class_dropout_prob: float = 0.1, | |
flow_original_res: bool = False, | |
flow_size: int = 512, | |
input_concat_dragging: bool = True, | |
attn_concat_dragging: bool = False, | |
flow_multi_resolution_conv: bool = False, | |
flow_in_old_version: bool = True, | |
): | |
super().__init__() | |
assert input_concat_dragging or attn_concat_dragging or flow_multi_resolution_conv | |
if flow_multi_resolution_conv: | |
assert not attn_concat_dragging and not input_concat_dragging | |
self.sample_size = sample_size | |
self.drag_dropout_prob = class_dropout_prob | |
if num_attention_heads is not None: | |
raise ValueError( | |
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19." | |
) | |
# If `num_attention_heads` is not defined (which is the case for most models) | |
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is. | |
# The reason for this behavior is to correct for incorrectly named variables that were introduced | |
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 | |
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking | |
# which is why we correct for the naming here. | |
num_attention_heads = num_attention_heads or attention_head_dim | |
# Check inputs | |
if len(down_block_types) != len(up_block_types): | |
raise ValueError( | |
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." | |
) | |
if len(block_out_channels) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." | |
) | |
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}." | |
) | |
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." | |
) | |
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}." | |
) | |
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}." | |
) | |
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types): | |
raise ValueError( | |
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}." | |
) | |
# input | |
conv_in_padding = (conv_in_kernel - 1) // 2 | |
self.num_drags = num_drags | |
self.attn_concat_dragging = attn_concat_dragging | |
if self.attn_concat_dragging: | |
self.drag_extra_dim = 4 * self.num_drags | |
self.flow_multi_resolution_conv = flow_multi_resolution_conv | |
if self.flow_multi_resolution_conv: | |
self.flow_adapter = Adapter( | |
channels=block_out_channels[:1] + block_out_channels[:-1], | |
nums_rb=2, | |
cin=3, | |
sk=True, | |
use_conv=False, | |
) | |
self.input_concat_dragging = input_concat_dragging | |
self.flow_in_old_version = flow_in_old_version | |
if self.input_concat_dragging: | |
if self.flow_in_old_version: | |
self.conv_in_flow = nn.Conv2d( | |
in_channels + flow_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding | |
) | |
else: | |
self.conv_in = nn.Conv2d( | |
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding | |
) | |
self.conv_in_flow = nn.Conv2d( | |
flow_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding, bias=False | |
) | |
else: | |
self.conv_in = nn.Conv2d( | |
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding | |
) | |
self.flow_original_res = flow_original_res | |
if flow_original_res and self.input_concat_dragging: | |
self.num_flow_down_layers = 0 | |
cur_sample_size = sample_size | |
while flow_size > cur_sample_size: | |
assert flow_size % cur_sample_size == 0 | |
self.num_flow_down_layers += 1 | |
cur_sample_size *= 2 | |
self.flow_preprocess = nn.ModuleList([]) | |
for _ in range(self.num_flow_down_layers): | |
self.flow_preprocess.append(nn.Conv2d( | |
flow_channels, flow_channels, kernel_size=3, padding=1 | |
)) | |
self.flow_proj_act = get_activation(act_fn) | |
self.num_clip_in = num_clip_in | |
self.clip_proj = nn.ModuleList([]) | |
for i in range(num_clip_in): | |
self.clip_proj.append(nn.Linear(clip_embedding_dim, clip_embedding_dim)) | |
self.clip_final = nn.Linear(clip_embedding_dim, cross_attention_dim) | |
self.use_drag_tokens = use_drag_tokens | |
self.single_drag_token = single_drag_token | |
if use_drag_tokens: | |
self.dragging_embedding_dim = dragging_embedding_dim | |
self.drag_proj = nn.Linear(dragging_embedding_dim * 4, dragging_embedding_dim * 4) | |
self.drag_final = nn.Linear(dragging_embedding_dim * 4, cross_attention_dim) | |
self.proj_act = get_activation(act_fn) | |
# time | |
if time_embedding_type == "fourier": | |
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2 | |
if time_embed_dim % 2 != 0: | |
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.") | |
self.time_proj = GaussianFourierProjection( | |
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos | |
) | |
timestep_input_dim = time_embed_dim | |
elif time_embedding_type == "positional": | |
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4 | |
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) | |
timestep_input_dim = block_out_channels[0] | |
else: | |
raise ValueError( | |
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`." | |
) | |
self.time_embedding = TimestepEmbedding( | |
timestep_input_dim, | |
time_embed_dim, | |
act_fn=act_fn, | |
post_act_fn=timestep_post_act, | |
cond_proj_dim=time_cond_proj_dim, | |
) | |
if encoder_hid_dim_type is None and encoder_hid_dim is not None: | |
encoder_hid_dim_type = "text_proj" | |
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type) | |
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.") | |
if encoder_hid_dim is None and encoder_hid_dim_type is not None: | |
raise ValueError( | |
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}." | |
) | |
if encoder_hid_dim_type == "text_proj": | |
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim) | |
elif encoder_hid_dim_type == "text_image_proj": | |
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much | |
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use | |
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)` | |
self.encoder_hid_proj = TextImageProjection( | |
text_embed_dim=encoder_hid_dim, | |
image_embed_dim=cross_attention_dim, | |
cross_attention_dim=cross_attention_dim, | |
) | |
elif encoder_hid_dim_type == "image_proj": | |
# Kandinsky 2.2 | |
self.encoder_hid_proj = ImageProjection( | |
image_embed_dim=encoder_hid_dim, | |
cross_attention_dim=cross_attention_dim, | |
) | |
elif encoder_hid_dim_type is not None: | |
raise ValueError( | |
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'." | |
) | |
else: | |
self.encoder_hid_proj = None | |
# class embedding | |
if class_embed_type is None and num_class_embeds is not None: | |
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) | |
elif class_embed_type == "timestep": | |
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn) | |
elif class_embed_type == "identity": | |
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) | |
elif class_embed_type == "projection": | |
if projection_class_embeddings_input_dim is None: | |
raise ValueError( | |
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set" | |
) | |
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except | |
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings | |
# 2. it projects from an arbitrary input dimension. | |
# | |
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations. | |
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings. | |
# As a result, `TimestepEmbedding` can be passed arbitrary vectors. | |
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) | |
elif class_embed_type == "simple_projection": | |
if projection_class_embeddings_input_dim is None: | |
raise ValueError( | |
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set" | |
) | |
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim) | |
else: | |
self.class_embedding = None | |
if addition_embed_type == "text": | |
if encoder_hid_dim is not None: | |
text_time_embedding_from_dim = encoder_hid_dim | |
else: | |
text_time_embedding_from_dim = cross_attention_dim | |
self.add_embedding = TextTimeEmbedding( | |
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads | |
) | |
elif addition_embed_type == "text_image": | |
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much | |
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use | |
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)` | |
self.add_embedding = TextImageTimeEmbedding( | |
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim | |
) | |
elif addition_embed_type == "text_time": | |
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift) | |
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) | |
elif addition_embed_type == "image": | |
# Kandinsky 2.2 | |
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim) | |
elif addition_embed_type == "image_hint": | |
# Kandinsky 2.2 ControlNet | |
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim) | |
elif addition_embed_type is not None: | |
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.") | |
if time_embedding_act_fn is None: | |
self.time_embed_act = None | |
else: | |
self.time_embed_act = get_activation(time_embedding_act_fn) | |
self.down_blocks = nn.ModuleList([]) | |
self.up_blocks = nn.ModuleList([]) | |
if isinstance(only_cross_attention, bool): | |
if mid_block_only_cross_attention is None: | |
mid_block_only_cross_attention = only_cross_attention | |
only_cross_attention = [only_cross_attention] * len(down_block_types) | |
if mid_block_only_cross_attention is None: | |
mid_block_only_cross_attention = False | |
if isinstance(num_attention_heads, int): | |
num_attention_heads = (num_attention_heads,) * len(down_block_types) | |
if isinstance(attention_head_dim, int): | |
attention_head_dim = (attention_head_dim,) * len(down_block_types) | |
if isinstance(cross_attention_dim, int): | |
cross_attention_dim = (cross_attention_dim,) * len(down_block_types) | |
if isinstance(layers_per_block, int): | |
layers_per_block = [layers_per_block] * len(down_block_types) | |
if isinstance(transformer_layers_per_block, int): | |
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) | |
if class_embeddings_concat: | |
# The time embeddings are concatenated with the class embeddings. The dimension of the | |
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the | |
# regular time embeddings | |
blocks_time_embed_dim = time_embed_dim * 2 | |
else: | |
blocks_time_embed_dim = time_embed_dim | |
# down | |
output_channel = block_out_channels[0] | |
for i, down_block_type in enumerate(down_block_types): | |
input_channel = output_channel | |
output_channel = block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
down_block = get_down_block( | |
self.attn_concat_dragging, | |
down_block_type, | |
num_layers=layers_per_block[i], | |
transformer_layers_per_block=transformer_layers_per_block[i], | |
in_channels=input_channel, | |
out_channels=output_channel, | |
temb_channels=blocks_time_embed_dim, | |
add_downsample=not is_final_block, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
cross_attention_dim=cross_attention_dim[i], | |
num_attention_heads=num_attention_heads[i], | |
downsample_padding=downsample_padding, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention[i], | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
resnet_skip_time_act=resnet_skip_time_act, | |
resnet_out_scale_factor=resnet_out_scale_factor, | |
cross_attention_norm=cross_attention_norm, | |
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, | |
flow_channels=self.drag_extra_dim if self.attn_concat_dragging else None, | |
) | |
self.down_blocks.append(down_block) | |
# mid | |
if mid_block_type == "UNetMidBlock2DCrossAttn": | |
mid_block_kwargs = dict( | |
transformer_layers_per_block=transformer_layers_per_block[-1], | |
in_channels=block_out_channels[-1], | |
temb_channels=blocks_time_embed_dim, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
output_scale_factor=mid_block_scale_factor, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
cross_attention_dim=cross_attention_dim[-1], | |
num_attention_heads=num_attention_heads[-1], | |
resnet_groups=norm_num_groups, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
upcast_attention=upcast_attention, | |
) | |
if self.attn_concat_dragging: | |
mid_block_kwargs["flow_channels"] = self.drag_extra_dim | |
mid_block_type += "WithFlow" | |
self.mid_block = eval(mid_block_type)( | |
**mid_block_kwargs | |
) | |
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn": | |
raise NotImplementedError | |
elif mid_block_type is None: | |
self.mid_block = None | |
else: | |
raise ValueError(f"unknown mid_block_type : {mid_block_type}") | |
# count how many layers upsample the images | |
self.num_upsamplers = 0 | |
# up | |
reversed_block_out_channels = list(reversed(block_out_channels)) | |
reversed_num_attention_heads = list(reversed(num_attention_heads)) | |
reversed_layers_per_block = list(reversed(layers_per_block)) | |
reversed_cross_attention_dim = list(reversed(cross_attention_dim)) | |
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block)) | |
only_cross_attention = list(reversed(only_cross_attention)) | |
output_channel = reversed_block_out_channels[0] | |
for i, up_block_type in enumerate(up_block_types): | |
is_final_block = i == len(block_out_channels) - 1 | |
prev_output_channel = output_channel | |
output_channel = reversed_block_out_channels[i] | |
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] | |
# add upsample block for all BUT final layer | |
if not is_final_block: | |
add_upsample = True | |
self.num_upsamplers += 1 | |
else: | |
add_upsample = False | |
up_block = get_up_block( | |
self.attn_concat_dragging, | |
up_block_type, | |
num_layers=reversed_layers_per_block[i] + 1, | |
transformer_layers_per_block=reversed_transformer_layers_per_block[i], | |
in_channels=input_channel, | |
out_channels=output_channel, | |
prev_output_channel=prev_output_channel, | |
temb_channels=blocks_time_embed_dim, | |
add_upsample=add_upsample, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
cross_attention_dim=reversed_cross_attention_dim[i], | |
num_attention_heads=reversed_num_attention_heads[i], | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention[i], | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
resnet_skip_time_act=resnet_skip_time_act, | |
resnet_out_scale_factor=resnet_out_scale_factor, | |
cross_attention_norm=cross_attention_norm, | |
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, | |
flow_channels=self.drag_extra_dim if self.attn_concat_dragging else None, | |
) | |
self.up_blocks.append(up_block) | |
prev_output_channel = output_channel | |
# out | |
if norm_num_groups is not None: | |
self.conv_norm_out = nn.GroupNorm( | |
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps | |
) | |
self.conv_act = get_activation(act_fn) | |
else: | |
self.conv_norm_out = None | |
self.conv_act = None | |
conv_out_padding = (conv_out_kernel - 1) // 2 | |
self.conv_out = nn.Conv2d( | |
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding | |
) | |
def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
r""" | |
Returns: | |
`dict` of attention processors: A dictionary containing all attention processors used in the model with | |
indexed by its weight name. | |
""" | |
# set recursively | |
processors = {} | |
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
if hasattr(module, "set_processor"): | |
processors[f"{name}.processor"] = module.processor | |
for sub_name, child in module.named_children(): | |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
return processors | |
for name, module in self.named_children(): | |
fn_recursive_add_processors(name, module, processors) | |
return processors | |
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
r""" | |
Sets the attention processor to use to compute attention. | |
Parameters: | |
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
for **all** `Attention` layers. | |
If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
processor. This is strongly recommended when setting trainable attention processors. | |
""" | |
count = len(self.attn_processors.keys()) | |
if isinstance(processor, dict) and len(processor) != count: | |
raise ValueError( | |
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
) | |
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
if hasattr(module, "set_processor"): | |
if not isinstance(processor, dict): | |
module.set_processor(processor) | |
else: | |
module.set_processor(processor.pop(f"{name}.processor")) | |
for sub_name, child in module.named_children(): | |
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
for name, module in self.named_children(): | |
fn_recursive_attn_processor(name, module, processor) | |
def set_default_attn_processor(self): | |
""" | |
Disables custom attention processors and sets the default attention implementation. | |
""" | |
self.set_attn_processor(AttnProcessor()) | |
def set_attention_slice(self, slice_size): | |
r""" | |
Enable sliced attention computation. | |
When this option is enabled, the attention module splits the input tensor in slices to compute attention in | |
several steps. This is useful for saving some memory in exchange for a small decrease in speed. | |
Args: | |
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): | |
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If | |
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is | |
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` | |
must be a multiple of `slice_size`. | |
""" | |
sliceable_head_dims = [] | |
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): | |
if hasattr(module, "set_attention_slice"): | |
sliceable_head_dims.append(module.sliceable_head_dim) | |
for child in module.children(): | |
fn_recursive_retrieve_sliceable_dims(child) | |
# retrieve number of attention layers | |
for module in self.children(): | |
fn_recursive_retrieve_sliceable_dims(module) | |
num_sliceable_layers = len(sliceable_head_dims) | |
if slice_size == "auto": | |
# half the attention head size is usually a good trade-off between | |
# speed and memory | |
slice_size = [dim // 2 for dim in sliceable_head_dims] | |
elif slice_size == "max": | |
# make smallest slice possible | |
slice_size = num_sliceable_layers * [1] | |
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size | |
if len(slice_size) != len(sliceable_head_dims): | |
raise ValueError( | |
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" | |
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." | |
) | |
for i in range(len(slice_size)): | |
size = slice_size[i] | |
dim = sliceable_head_dims[i] | |
if size is not None and size > dim: | |
raise ValueError(f"size {size} has to be smaller or equal to {dim}.") | |
# Recursively walk through all the children. | |
# Any children which exposes the set_attention_slice method | |
# gets the message | |
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): | |
if hasattr(module, "set_attention_slice"): | |
module.set_attention_slice(slice_size.pop()) | |
for child in module.children(): | |
fn_recursive_set_attention_slice(child, slice_size) | |
reversed_slice_size = list(reversed(slice_size)) | |
for module in self.children(): | |
fn_recursive_set_attention_slice(module, reversed_slice_size) | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D, CrossAttnUpBlock2D, UpBlock2D)): | |
module.gradient_checkpointing = value | |
def _convert_drag_to_concatting_image(self, drag: torch.Tensor, current_resolution: int) -> torch.Tensor: | |
assert self.drag_extra_dim == 4 * self.num_drags | |
bsz = drag.shape[0] | |
concatting_image = -torch.ones(bsz, self.drag_extra_dim, current_resolution, current_resolution) | |
concatting_image = concatting_image.to(drag.device) | |
not_all_zeros = drag.any(dim=-1).repeat_interleave(4, dim=1).unsqueeze(-1).unsqueeze(-1) | |
y_grid, x_grid = torch.meshgrid(torch.arange(current_resolution), torch.arange(current_resolution), indexing="ij") | |
y_grid = y_grid.to(drag.device).unsqueeze(0).unsqueeze(0) # (1, 1, res, res) | |
x_grid = x_grid.to(drag.device).unsqueeze(0).unsqueeze(0) | |
x0 = (drag[..., 0] * current_resolution - 0.5).round().clip(0, current_resolution - 1) | |
x_src = (drag[..., 0] * current_resolution - x0).unsqueeze(-1).unsqueeze(-1) # (bsz, num_drags, 1, 1) | |
x0 = x0.unsqueeze(-1).unsqueeze(-1) | |
x0 = torch.stack([x0, x0, torch.zeros_like(x0) - 1, torch.zeros_like(x0) - 1], dim=2).view(bsz, 4 * self.num_drags, 1, 1) | |
y0 = (drag[..., 1] * current_resolution - 0.5).round().clip(0, current_resolution - 1) | |
y_src = (drag[..., 1] * current_resolution - y0).unsqueeze(-1).unsqueeze(-1) | |
y0 = y0.unsqueeze(-1).unsqueeze(-1) | |
y0 = torch.stack([y0, y0, torch.zeros_like(y0) - 1, torch.zeros_like(y0) - 1], dim=2).view(bsz, 4 * self.num_drags, 1, 1) | |
x1 = (drag[..., 2] * current_resolution - 0.5).round().clip(0, current_resolution - 1) | |
x_tgt = (drag[..., 2] * current_resolution - x1).unsqueeze(-1).unsqueeze(-1) | |
x1 = x1.unsqueeze(-1).unsqueeze(-1) | |
x1 = torch.stack([torch.zeros_like(x1) - 1, torch.zeros_like(x1) - 1, x1, x1], dim=2).view(bsz, 4 * self.num_drags, 1, 1) | |
y1 = (drag[..., 3] * current_resolution - 0.5).round().clip(0, current_resolution - 1) | |
y_tgt = (drag[..., 3] * current_resolution - y1).unsqueeze(-1).unsqueeze(-1) | |
y1 = y1.unsqueeze(-1).unsqueeze(-1) | |
y1 = torch.stack([torch.zeros_like(y1) - 1, torch.zeros_like(y1) - 1, y1, y1], dim=2).view(bsz, 4 * self.num_drags, 1, 1) | |
value_image = torch.stack([x_src, y_src, x_tgt, y_tgt], dim=2).view(bsz, 4 * self.num_drags, 1, 1) | |
value_image = value_image.expand(bsz, 4 * self.num_drags, current_resolution, current_resolution) | |
concatting_image[(x_grid == x0) & (y_grid == y0) & not_all_zeros] = value_image[(x_grid == x0) & (y_grid == y0) & not_all_zeros] | |
concatting_image[(x_grid == x1) & (y_grid == y1) & not_all_zeros] = value_image[(x_grid == x1) & (y_grid == y1) & not_all_zeros] | |
return concatting_image | |
def forward( | |
self, | |
x: torch.FloatTensor, | |
t: torch.Tensor, | |
x_cond: torch.FloatTensor, | |
x_cond_extra: Optional[torch.Tensor] = None, | |
force_drop_ids: Optional[torch.Tensor] = None, | |
hidden_cls: Optional[torch.Tensor] = None, | |
drags: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
r""" | |
The [`UNet2DConditionModel`] forward method. | |
Args: | |
sample (`torch.FloatTensor`): | |
The noisy input tensor with the following shape `(batch, channel, height, width)`. | |
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input. | |
encoder_hidden_states (`torch.FloatTensor`): | |
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`. | |
encoder_attention_mask (`torch.Tensor`): | |
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If | |
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias, | |
which adds large negative values to the attention scores corresponding to "discard" tokens. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain | |
tuple. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`]. | |
added_cond_kwargs: (`dict`, *optional*): | |
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that | |
are passed along to the UNet blocks. | |
Returns: | |
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: | |
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise | |
a `tuple` is returned where the first element is the sample tensor. | |
""" | |
# By default samples have to be AT least a multiple of the overall upsampling factor. | |
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers). | |
# However, the upsampling interpolation output size can be forced to fit any upsampling size | |
# on the fly if necessary. | |
default_overall_up_factor = 2 ** self.num_upsamplers | |
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` | |
forward_upsample_size = False | |
upsample_size = None | |
if any(s % default_overall_up_factor != 0 for s in x.shape[-2:]): | |
logger.info("Forward upsample size to force interpolation output size.") | |
forward_upsample_size = True | |
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension | |
# expects mask of shape: | |
# [batch, key_tokens] | |
# adds singleton query_tokens dimension: | |
# [batch, 1, key_tokens] | |
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: | |
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) | |
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) | |
# if attention_mask is not None: | |
# assume that mask is expressed as: | |
# (1 = keep, 0 = discard) | |
# convert mask into a bias that can be added to attention scores: | |
# (keep = +0, discard = -10000.0) | |
# attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 | |
# attention_mask = attention_mask.unsqueeze(1) | |
# convert encoder_attention_mask to a bias the same way we do for attention_mask | |
# if encoder_attention_mask is not None: | |
# encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 | |
# encoder_attention_mask = encoder_attention_mask.unsqueeze(1) | |
if self.flow_original_res and self.input_concat_dragging: | |
for i in range(self.num_flow_down_layers): | |
x_cond_extra = self.flow_preprocess[i](x_cond_extra) | |
x_cond_extra = self.flow_proj_act(x_cond_extra) | |
x_cond_extra = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)(x_cond_extra) | |
if self.input_concat_dragging: | |
assert x_cond_extra.shape[-1] == x.shape[-1], f"{x_cond_extra.shape} != {x.shape}" | |
bsz, num_drags, drag_dim = drags.shape | |
assert num_drags == self.num_drags | |
if (self.train and self.drag_dropout_prob > 0) or force_drop_ids is not None: | |
if force_drop_ids is None: | |
drop_ids = torch.rand(bsz, device=x_cond_extra.device) < self.drag_dropout_prob | |
else: | |
drop_ids = force_drop_ids == 1 | |
x_cond_extra = torch.where( | |
drop_ids[:, None, None, None].expand_as(x_cond_extra), | |
torch.zeros_like(x_cond_extra), | |
x_cond_extra, | |
) | |
drags = torch.where( | |
drop_ids[:, None, None].expand_as(drags), | |
torch.zeros_like(drags), | |
drags, | |
) | |
if not self.input_concat_dragging: | |
sample = torch.cat([x_cond, x], dim=0) | |
else: | |
sample_noised = torch.cat([x, x_cond_extra], dim=1) | |
sample_input = torch.cat([x_cond, torch.zeros_like(x_cond_extra)], dim=1) | |
sample = torch.cat([sample_input, sample_noised], dim=0) | |
drags = torch.cat([torch.zeros_like(drags), drags], dim=0) | |
if self.flow_multi_resolution_conv: | |
x_cond_extra = torch.cat([torch.zeros_like(x_cond_extra), x_cond_extra], dim=0) | |
flow_multi_resolution_features = self.flow_adapter(x_cond_extra) | |
# -1. (new) get encoder_hidden_states | |
if self.use_drag_tokens: | |
assert drag_dim == 4 | |
drags = drags.reshape(-1, 4) | |
drags = get_sin_cos_pos_embed(embed_dim=self.dragging_embedding_dim, x=drags) | |
drags = drags.reshape(-1, num_drags, self.dragging_embedding_dim * 4) | |
drag_states = self.drag_proj(drags) | |
drag_states = self.proj_act(drag_states) | |
drag_states = self.drag_final(drag_states) | |
assert hidden_cls.shape[1] >= self.num_clip_in | |
cls_proj = 0 | |
for i in range(self.num_clip_in): | |
current_cls = hidden_cls[:, -(i+1), :] | |
cls_proj += self.clip_proj[i](current_cls) | |
cls_proj = cls_proj / self.num_clip_in | |
cls_proj = self.proj_act(cls_proj) | |
cls_proj = self.clip_final(cls_proj) | |
if self.use_drag_tokens: | |
if not self.single_drag_token: | |
encoder_hidden_states = torch.cat([drag_states, torch.concat([cls_proj[:, None, :], cls_proj[:, None, :]], dim=0)], dim=1) | |
assert encoder_hidden_states.shape[1] == num_drags + 1 | |
else: | |
encoder_hidden_states = torch.cat([torch.mean(drag_states, dim=1, keepdim=True), torch.concat([cls_proj[:, None, :], cls_proj[:, None, :]], dim=0)], dim=1) | |
assert encoder_hidden_states.shape[1] == 2 | |
else: | |
encoder_hidden_states = cls_proj[:, None, :] | |
assert encoder_hidden_states.shape[1] == 1 | |
encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states], dim=0) | |
# 0. center input if necessary | |
assert not self.config.center_input_sample, "center_input_sample is not supported yet." | |
if self.config.center_input_sample: | |
sample = 2 * sample - 1.0 | |
# 1. time | |
timesteps = t | |
if len(timesteps.shape) == 0: | |
timesteps = timesteps[None].to(sample.device) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timesteps = torch.cat([timesteps, timesteps], dim=0) | |
t_emb = self.time_proj(timesteps) | |
# `Timesteps` does not contain any weights and will always return f32 tensors | |
# but time_embedding might actually be running in fp16. so we need to cast here. | |
# there might be better ways to encapsulate this. | |
t_emb = t_emb.to(dtype=sample.dtype) | |
emb = self.time_embedding(t_emb, None) | |
aug_emb = None | |
if self.class_embedding is not None: | |
if class_labels is None: | |
raise ValueError("class_labels should be provided when num_class_embeds > 0") | |
if self.config.class_embed_type == "timestep": | |
class_labels = self.time_proj(class_labels) | |
# `Timesteps` does not contain any weights and will always return f32 tensors | |
# there might be better ways to encapsulate this. | |
class_labels = class_labels.to(dtype=sample.dtype) | |
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype) | |
if self.config.class_embeddings_concat: | |
emb = torch.cat([emb, class_emb], dim=-1) | |
else: | |
emb = emb + class_emb | |
if self.config.addition_embed_type == "text": | |
aug_emb = self.add_embedding(encoder_hidden_states) | |
elif self.config.addition_embed_type == "text_image": | |
# Kandinsky 2.1 - style | |
if "image_embeds" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" | |
) | |
image_embs = added_cond_kwargs.get("image_embeds") | |
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states) | |
aug_emb = self.add_embedding(text_embs, image_embs) | |
elif self.config.addition_embed_type == "text_time": | |
# SDXL - style | |
if "text_embeds" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" | |
) | |
text_embeds = added_cond_kwargs.get("text_embeds") | |
if "time_ids" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" | |
) | |
time_ids = added_cond_kwargs.get("time_ids") | |
time_embeds = self.add_time_proj(time_ids.flatten()) | |
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) | |
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) | |
add_embeds = add_embeds.to(emb.dtype) | |
aug_emb = self.add_embedding(add_embeds) | |
elif self.config.addition_embed_type == "image": | |
# Kandinsky 2.2 - style | |
if "image_embeds" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" | |
) | |
image_embs = added_cond_kwargs.get("image_embeds") | |
aug_emb = self.add_embedding(image_embs) | |
elif self.config.addition_embed_type == "image_hint": | |
# Kandinsky 2.2 - style | |
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`" | |
) | |
image_embs = added_cond_kwargs.get("image_embeds") | |
hint = added_cond_kwargs.get("hint") | |
aug_emb, hint = self.add_embedding(image_embs, hint) | |
sample = torch.cat([sample, hint], dim=1) | |
emb = emb + aug_emb if aug_emb is not None else emb | |
if self.time_embed_act is not None: | |
emb = self.time_embed_act(emb) | |
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj": | |
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states) | |
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj": | |
# Kadinsky 2.1 - style | |
if "image_embeds" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" | |
) | |
image_embeds = added_cond_kwargs.get("image_embeds") | |
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds) | |
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj": | |
# Kandinsky 2.2 - style | |
if "image_embeds" not in added_cond_kwargs: | |
raise ValueError( | |
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" | |
) | |
image_embeds = added_cond_kwargs.get("image_embeds") | |
encoder_hidden_states = self.encoder_hid_proj(image_embeds) | |
# 2. pre-process | |
if self.input_concat_dragging: | |
if self.flow_in_old_version: | |
sample = self.conv_in_flow(sample) | |
else: | |
sample_x, sample_flow = torch.split(sample, 4, dim=1) | |
sample_x = self.conv_in(sample_x) | |
sample_flow = self.conv_in_flow(sample_flow) | |
sample = sample_x + sample_flow | |
else: | |
sample = self.conv_in(sample) | |
# 3. down | |
down_block_res_samples = (sample,) | |
for idx, downsample_block in enumerate(self.down_blocks): | |
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: | |
# For t2i-adapter CrossAttnDownBlock2D | |
additional_residuals = {} | |
down_forward_kwargs = dict( | |
hidden_states=sample if not self.flow_multi_resolution_conv else (sample + flow_multi_resolution_features[idx]), | |
temb=emb, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=None, | |
cross_attention_kwargs=None, | |
encoder_attention_mask=None, | |
**additional_residuals, | |
) | |
if self.attn_concat_dragging: | |
down_forward_kwargs["flow"] = self._convert_drag_to_concatting_image(drags, sample.shape[-1]) | |
sample, res_samples = downsample_block( | |
**down_forward_kwargs | |
) | |
else: | |
sample, res_samples = downsample_block( | |
hidden_states=sample if not self.flow_multi_resolution_conv else (sample + flow_multi_resolution_features[idx]), | |
temb=emb | |
) | |
down_block_res_samples += res_samples | |
# 4. mid | |
if self.mid_block is not None: | |
if self.attn_concat_dragging: | |
sample = self.mid_block( | |
sample, | |
emb, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=None, | |
cross_attention_kwargs=None, | |
encoder_attention_mask=None, | |
flow=self._convert_drag_to_concatting_image(drags, sample.shape[-1]), | |
) | |
else: | |
sample = self.mid_block( | |
sample, | |
emb, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=None, | |
cross_attention_kwargs=None, | |
encoder_attention_mask=None, | |
) | |
# 5. up | |
for i, upsample_block in enumerate(self.up_blocks): | |
is_final_block = i == len(self.up_blocks) - 1 | |
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] | |
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] | |
# if we have not reached the final block and need to forward the | |
# upsample size, we do it here | |
if not is_final_block and forward_upsample_size: | |
upsample_size = down_block_res_samples[-1].shape[2:] | |
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: | |
up_block_forward_kwargs = dict( | |
hidden_states=sample, | |
temb=emb, | |
res_hidden_states_tuple=res_samples, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=None, | |
cross_attention_kwargs=None, | |
encoder_attention_mask=None, | |
) | |
if self.attn_concat_dragging: | |
up_block_forward_kwargs["flow"] = self._convert_drag_to_concatting_image(drags, sample.shape[-1]) | |
sample = upsample_block( | |
**up_block_forward_kwargs | |
) | |
else: | |
sample = upsample_block( | |
hidden_states=sample, | |
temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size | |
) | |
# 6. post-process | |
if self.conv_norm_out: | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act(sample) | |
sample = self.conv_out(sample) | |
return sample[bsz:] | |
def forward_with_cfg( | |
self, | |
x: torch.FloatTensor, | |
t: torch.Tensor, | |
x_cond: torch.FloatTensor, | |
x_cond_extra: Optional[torch.Tensor] = None, | |
hidden_cls: Optional[torch.Tensor] = None, | |
drags: Optional[torch.Tensor] = None, | |
cfg_scale: float = 1, | |
) -> torch.Tensor: | |
half = x[: len(x) // 2] | |
combined = torch.cat([half, half], dim=0) | |
force_drop_ids = torch.arange(len(combined), device=combined.device) < len(half) | |
model_out = self.forward(combined, t, x_cond, x_cond_extra, force_drop_ids=force_drop_ids, hidden_cls=hidden_cls, drags=drags) | |
# For exact reproducibility reasons, we apply classifier-free guidance on only | |
# three channels by default. The standard approach to cfg applies it to all channels. | |
# This can be done by uncommenting the following line and commenting-out the line following that. | |
# eps, rest = model_out[:, :3], model_out[:, 3:] | |
eps, rest = model_out[:, :4], model_out[:, 4:] | |
uncond_eps, cond_eps = torch.split(eps, len(eps) // 2, dim=0) | |
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps) | |
eps = torch.cat([half_eps, half_eps], dim=0) | |
return torch.cat([eps, rest], dim=1) | |
def from_pretrained_sd(cls, pretrained_model_path, subfolder="unet", unet_additional_kwargs=None, load=True): | |
if subfolder is not None: | |
pretrained_model_path = os.path.join(pretrained_model_path, subfolder) | |
print(f"loading unet's pretrained weights from {pretrained_model_path} ...") | |
config_file = os.path.join(pretrained_model_path, 'config.json') | |
if not os.path.isfile(config_file): | |
raise RuntimeError(f"{config_file} does not exist") | |
with open(config_file, "r") as f: | |
config = json.load(f) | |
config["_class_name"] = cls.__name__ | |
from diffusers.utils import WEIGHTS_NAME | |
one_sided_attn = unet_additional_kwargs.pop("one_sided_attn", True) if unet_additional_kwargs is not None else True | |
model = cls.from_config(config, **unet_additional_kwargs) if unet_additional_kwargs is not None else cls.from_config(config) | |
if load: | |
model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME) | |
if not os.path.isfile(model_file): | |
raise RuntimeError(f"{model_file} does not exist") | |
state_dict = torch.load(model_file, map_location="cpu") | |
m, u = model.load_state_dict(state_dict, strict=False) | |
# Set the attention processor to always take k, v from the input (upper) branch | |
if one_sided_attn: | |
attn_processors_dict={ | |
"down_blocks.0.attentions.0.transformer_blocks.0.attn1.processor": OneSidedAttnProcessor(), | |
"down_blocks.0.attentions.0.transformer_blocks.0.attn2.processor": AttnProcessor(), | |
"down_blocks.0.attentions.1.transformer_blocks.0.attn1.processor": OneSidedAttnProcessor(), | |
"down_blocks.0.attentions.1.transformer_blocks.0.attn2.processor": AttnProcessor(), | |
"down_blocks.1.attentions.0.transformer_blocks.0.attn1.processor": OneSidedAttnProcessor(), | |
"down_blocks.1.attentions.0.transformer_blocks.0.attn2.processor": AttnProcessor(), | |
"down_blocks.1.attentions.1.transformer_blocks.0.attn1.processor": OneSidedAttnProcessor(), | |
"down_blocks.1.attentions.1.transformer_blocks.0.attn2.processor": AttnProcessor(), | |
"down_blocks.2.attentions.0.transformer_blocks.0.attn1.processor": OneSidedAttnProcessor(), | |
"down_blocks.2.attentions.0.transformer_blocks.0.attn2.processor": AttnProcessor(), | |
"down_blocks.2.attentions.1.transformer_blocks.0.attn1.processor": OneSidedAttnProcessor(), | |
"down_blocks.2.attentions.1.transformer_blocks.0.attn2.processor": AttnProcessor(), | |
"up_blocks.1.attentions.0.transformer_blocks.0.attn1.processor": OneSidedAttnProcessor(), | |
"up_blocks.1.attentions.0.transformer_blocks.0.attn2.processor": AttnProcessor(), | |
"up_blocks.1.attentions.1.transformer_blocks.0.attn1.processor": OneSidedAttnProcessor(), | |
"up_blocks.1.attentions.1.transformer_blocks.0.attn2.processor": AttnProcessor(), | |
"up_blocks.1.attentions.2.transformer_blocks.0.attn1.processor": OneSidedAttnProcessor(), | |
"up_blocks.1.attentions.2.transformer_blocks.0.attn2.processor": AttnProcessor(), | |
"up_blocks.2.attentions.0.transformer_blocks.0.attn1.processor": OneSidedAttnProcessor(), | |
"up_blocks.2.attentions.0.transformer_blocks.0.attn2.processor": AttnProcessor(), | |
"up_blocks.2.attentions.1.transformer_blocks.0.attn1.processor": OneSidedAttnProcessor(), | |
"up_blocks.2.attentions.1.transformer_blocks.0.attn2.processor": AttnProcessor(), | |
"up_blocks.2.attentions.2.transformer_blocks.0.attn1.processor": OneSidedAttnProcessor(), | |
"up_blocks.2.attentions.2.transformer_blocks.0.attn2.processor": AttnProcessor(), | |
"up_blocks.3.attentions.0.transformer_blocks.0.attn1.processor": OneSidedAttnProcessor(), | |
"up_blocks.3.attentions.0.transformer_blocks.0.attn2.processor": AttnProcessor(), | |
"up_blocks.3.attentions.1.transformer_blocks.0.attn1.processor": OneSidedAttnProcessor(), | |
"up_blocks.3.attentions.1.transformer_blocks.0.attn2.processor": AttnProcessor(), | |
"up_blocks.3.attentions.2.transformer_blocks.0.attn1.processor": OneSidedAttnProcessor(), | |
"up_blocks.3.attentions.2.transformer_blocks.0.attn2.processor": AttnProcessor(), | |
"mid_block.attentions.0.transformer_blocks.0.attn1.processor": OneSidedAttnProcessor(), | |
"mid_block.attentions.0.transformer_blocks.0.attn2.processor": AttnProcessor(), | |
} | |
model.set_attn_processor(attn_processors_dict) | |
return model | |