Spaces:
Runtime error
Runtime error
File size: 8,590 Bytes
8d1ad8a 548eaeb 9bef5ec 8a6393a 8d1ad8a 548eaeb 8d1ad8a 548eaeb 29d4b00 bc226fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import os
os.system(f"pip install gradio > /dev/null 2>&1")
os.system(f"pip install -qq transformers scipy ftfy accelerate > /dev/null 2>&1")
os.system(f"pip install -qq --upgrade diffusers[torch] > /dev/null 2>&1")
os.system(f"git clone https://github.com/v8hid/infinite-zoom-stable-diffusion.git")
os.system(f"pip install imageio")
os.system(f"pip install diffusers")
import sys
sys.path.extend(['infinite-zoom-stable-diffusion/'])
from helpers import *
from diffusers import StableDiffusionInpaintPipeline, EulerAncestralDiscreteScheduler
from PIL import Image
import gradio as gr
import numpy as np
import torch
import os
import time
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
inpaint_model_list = [
"stabilityai/stable-diffusion-2-inpainting",
"runwayml/stable-diffusion-inpainting",
"parlance/dreamlike-diffusion-1.0-inpainting",
"ghunkins/stable-diffusion-liberty-inpainting",
"ImNoOne/f222-inpainting-diffusers"
]
default_prompt = "A psychedelic jungle with trees that have glowing, fractal-like patterns, Simon stalenhag poster 1920s style, street level view, hyper futuristic, 8k resolution, hyper realistic"
default_negative_prompt = "frames, borderline, text, charachter, duplicate, error, out of frame, watermark, low quality, ugly, deformed, blur"
def zoom(
model_id,
prompts_array,
negative_prompt,
num_outpainting_steps,
guidance_scale,
num_inference_steps,
custom_init_image
):
prompts = {}
for x in prompts_array:
try:
key = int(x[0])
value = str(x[1])
prompts[key] = value
except ValueError:
pass
pipe = StableDiffusionInpaintPipeline.from_pretrained(
model_id,
torch_dtype=torch.float16,
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(
pipe.scheduler.config)
pipe = pipe.to("cuda")
pipe.safety_checker = None
pipe.enable_attention_slicing()
g_cuda = torch.Generator(device='cuda')
height = 512
width = height
current_image = Image.new(mode="RGBA", size=(height, width))
mask_image = np.array(current_image)[:, :, 3]
mask_image = Image.fromarray(255-mask_image).convert("RGB")
current_image = current_image.convert("RGB")
if (custom_init_image):
current_image = custom_init_image.resize(
(width, height), resample=Image.LANCZOS)
else:
init_images = pipe(prompt=prompts[min(k for k in prompts.keys() if k >= 0)],
negative_prompt=negative_prompt,
image=current_image,
guidance_scale=guidance_scale,
height=height,
width=width,
mask_image=mask_image,
num_inference_steps=num_inference_steps)[0]
current_image = init_images[0]
mask_width = 128
num_interpol_frames = 30
all_frames = []
all_frames.append(current_image)
for i in range(num_outpainting_steps):
print('Outpaint step: ' + str(i+1) +
' / ' + str(num_outpainting_steps))
prev_image_fix = current_image
prev_image = shrink_and_paste_on_blank(current_image, mask_width)
current_image = prev_image
# create mask (black image with white mask_width width edges)
mask_image = np.array(current_image)[:, :, 3]
mask_image = Image.fromarray(255-mask_image).convert("RGB")
# inpainting step
current_image = current_image.convert("RGB")
images = pipe(prompt=prompts[max(k for k in prompts.keys() if k <= i)],
negative_prompt=negative_prompt,
image=current_image,
guidance_scale=guidance_scale,
height=height,
width=width,
# generator = g_cuda.manual_seed(seed),
mask_image=mask_image,
num_inference_steps=num_inference_steps)[0]
current_image = images[0]
current_image.paste(prev_image, mask=prev_image)
# interpolation steps bewteen 2 inpainted images (=sequential zoom and crop)
for j in range(num_interpol_frames - 1):
interpol_image = current_image
interpol_width = round(
(1 - (1-2*mask_width/height)**(1-(j+1)/num_interpol_frames))*height/2
)
interpol_image = interpol_image.crop((interpol_width,
interpol_width,
width - interpol_width,
height - interpol_width))
interpol_image = interpol_image.resize((height, width))
# paste the higher resolution previous image in the middle to avoid drop in quality caused by zooming
interpol_width2 = round(
(1 - (height-2*mask_width) / (height-2*interpol_width)) / 2*height
)
prev_image_fix_crop = shrink_and_paste_on_blank(
prev_image_fix, interpol_width2)
interpol_image.paste(prev_image_fix_crop, mask=prev_image_fix_crop)
all_frames.append(interpol_image)
all_frames.append(current_image)
interpol_image.show()
video_file_name = "infinite_zoom_" + str(time.time())
fps = 30
save_path = video_file_name + ".mp4"
start_frame_dupe_amount = 15
last_frame_dupe_amount = 15
write_video(save_path, all_frames, fps, False,
start_frame_dupe_amount, last_frame_dupe_amount)
return save_path
def zoom_app():
with gr.Blocks():
with gr.Row():
with gr.Column():
outpaint_prompts = gr.Dataframe(
type="array",
headers=["outpaint steps", "prompt"],
datatype=["number", "str"],
row_count=1,
col_count=(2, "fixed"),
value=[[0, default_prompt]],
wrap=True
)
outpaint_negative_prompt = gr.Textbox(
lines=1,
value=default_negative_prompt,
label='Negative Prompt'
)
outpaint_steps = gr.Slider(
minimum=5,
maximum=25,
step=1,
value=12,
label='Total Outpaint Steps'
)
with gr.Accordion("Advanced Options", open=False):
model_id = gr.Dropdown(
choices=inpaint_model_list,
value=inpaint_model_list[0],
label='Pre-trained Model ID'
)
guidance_scale = gr.Slider(
minimum=0.1,
maximum=15,
step=0.1,
value=7,
label='Guidance Scale'
)
sampling_step = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label='Sampling Steps for each outpaint'
)
init_image = gr.Image(type="pil",label="custom initial image")
generate_btn = gr.Button(value='Generate video')
with gr.Column():
output_image = gr.Video(label='Output', format="mp4").style(
width=512, height=512)
generate_btn.click(
fn=zoom,
inputs=[
model_id,
outpaint_prompts,
outpaint_negative_prompt,
outpaint_steps,
guidance_scale,
sampling_step,
init_image
],
outputs=output_image,
)
import gradio as gr
app = gr.Blocks()
with app:
gr.HTML(
"""
<h2 style='text-align: center'>
<a href="https://github.com/v8hid/infinite-zoom-stable-diffusion/" style="display:inline-block;">
<img src="https://img.shields.io/static/v1?label=github&message=repository&color=blue&style=for-the-badge&logo=github&logoColor=white" alt="build status">
</a>
<br>
Text to Video - Infinite zoom effect
</h2>
"""
)
zoom_app()
app.launch(debug=True,enable_queue=True)
|