raylander commited on
Commit
f090b19
·
0 Parent(s):

Duplicate from raylander/mountdrive

Browse files
Files changed (3) hide show
  1. .gitattributes +35 -0
  2. README.md +11 -0
  3. app.py +242 -0
.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Mountdrive
3
+ emoji: 🌍
4
+ colorFrom: blue
5
+ colorTo: blue
6
+ sdk: gradio
7
+ sdk_version: 3.9
8
+ app_file: app.py
9
+ pinned: true
10
+ duplicated_from: raylander/mountdrive
11
+ ---
app.py ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ os.system(f"pip install gradio > /dev/null 2>&1")
4
+ os.system(f"pip install -qq transformers scipy ftfy accelerate > /dev/null 2>&1")
5
+ os.system(f"pip install -qq --upgrade diffusers[torch] > /dev/null 2>&1")
6
+ os.system(f"git clone https://github.com/v8hid/infinite-zoom-stable-diffusion.git")
7
+ os.system(f"pip install imageio")
8
+ os.system(f"pip install diffusers")
9
+
10
+
11
+ import sys
12
+ sys.path.extend(['infinite-zoom-stable-diffusion/'])
13
+ from helpers import *
14
+ from diffusers import StableDiffusionInpaintPipeline, EulerAncestralDiscreteScheduler
15
+ from PIL import Image
16
+ import gradio as gr
17
+ import numpy as np
18
+ import torch
19
+ import os
20
+ import time
21
+
22
+
23
+ os.environ["CUDA_VISIBLE_DEVICES"] = "0"
24
+ inpaint_model_list = [
25
+ "stabilityai/stable-diffusion-2-inpainting",
26
+ "runwayml/stable-diffusion-inpainting",
27
+ "parlance/dreamlike-diffusion-1.0-inpainting",
28
+ "ghunkins/stable-diffusion-liberty-inpainting",
29
+ "ImNoOne/f222-inpainting-diffusers"
30
+ ]
31
+ default_prompt = "A psychedelic jungle with trees that have glowing, fractal-like patterns, Simon stalenhag poster 1920s style, street level view, hyper futuristic, 8k resolution, hyper realistic"
32
+ default_negative_prompt = "frames, borderline, text, charachter, duplicate, error, out of frame, watermark, low quality, ugly, deformed, blur"
33
+
34
+
35
+ def zoom(
36
+ model_id,
37
+ prompts_array,
38
+ negative_prompt,
39
+ num_outpainting_steps,
40
+ guidance_scale,
41
+ num_inference_steps,
42
+ custom_init_image
43
+ ):
44
+ prompts = {}
45
+ for x in prompts_array:
46
+ try:
47
+ key = int(x[0])
48
+ value = str(x[1])
49
+ prompts[key] = value
50
+ except ValueError:
51
+ pass
52
+ pipe = StableDiffusionInpaintPipeline.from_pretrained(
53
+ model_id,
54
+ torch_dtype=torch.float16,
55
+ )
56
+ pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(
57
+ pipe.scheduler.config)
58
+ pipe = pipe.to("cuda")
59
+
60
+ pipe.safety_checker = None
61
+ pipe.enable_attention_slicing()
62
+ g_cuda = torch.Generator(device='cuda')
63
+
64
+ height = 512
65
+ width = height
66
+
67
+ current_image = Image.new(mode="RGBA", size=(height, width))
68
+ mask_image = np.array(current_image)[:, :, 3]
69
+ mask_image = Image.fromarray(255-mask_image).convert("RGB")
70
+ current_image = current_image.convert("RGB")
71
+ if (custom_init_image):
72
+ current_image = custom_init_image.resize(
73
+ (width, height), resample=Image.LANCZOS)
74
+ else:
75
+ init_images = pipe(prompt=prompts[min(k for k in prompts.keys() if k >= 0)],
76
+ negative_prompt=negative_prompt,
77
+ image=current_image,
78
+ guidance_scale=guidance_scale,
79
+ height=height,
80
+ width=width,
81
+ mask_image=mask_image,
82
+ num_inference_steps=num_inference_steps)[0]
83
+ current_image = init_images[0]
84
+ mask_width = 128
85
+ num_interpol_frames = 30
86
+
87
+ all_frames = []
88
+ all_frames.append(current_image)
89
+
90
+ for i in range(num_outpainting_steps):
91
+ print('Outpaint step: ' + str(i+1) +
92
+ ' / ' + str(num_outpainting_steps))
93
+
94
+ prev_image_fix = current_image
95
+
96
+ prev_image = shrink_and_paste_on_blank(current_image, mask_width)
97
+
98
+ current_image = prev_image
99
+
100
+ # create mask (black image with white mask_width width edges)
101
+ mask_image = np.array(current_image)[:, :, 3]
102
+ mask_image = Image.fromarray(255-mask_image).convert("RGB")
103
+
104
+ # inpainting step
105
+ current_image = current_image.convert("RGB")
106
+ images = pipe(prompt=prompts[max(k for k in prompts.keys() if k <= i)],
107
+ negative_prompt=negative_prompt,
108
+ image=current_image,
109
+ guidance_scale=guidance_scale,
110
+ height=height,
111
+ width=width,
112
+ # generator = g_cuda.manual_seed(seed),
113
+ mask_image=mask_image,
114
+ num_inference_steps=num_inference_steps)[0]
115
+ current_image = images[0]
116
+ current_image.paste(prev_image, mask=prev_image)
117
+
118
+ # interpolation steps bewteen 2 inpainted images (=sequential zoom and crop)
119
+ for j in range(num_interpol_frames - 1):
120
+ interpol_image = current_image
121
+ interpol_width = round(
122
+ (1 - (1-2*mask_width/height)**(1-(j+1)/num_interpol_frames))*height/2
123
+ )
124
+ interpol_image = interpol_image.crop((interpol_width,
125
+ interpol_width,
126
+ width - interpol_width,
127
+ height - interpol_width))
128
+
129
+ interpol_image = interpol_image.resize((height, width))
130
+
131
+ # paste the higher resolution previous image in the middle to avoid drop in quality caused by zooming
132
+ interpol_width2 = round(
133
+ (1 - (height-2*mask_width) / (height-2*interpol_width)) / 2*height
134
+ )
135
+ prev_image_fix_crop = shrink_and_paste_on_blank(
136
+ prev_image_fix, interpol_width2)
137
+ interpol_image.paste(prev_image_fix_crop, mask=prev_image_fix_crop)
138
+
139
+ all_frames.append(interpol_image)
140
+ all_frames.append(current_image)
141
+ interpol_image.show()
142
+ video_file_name = "infinite_zoom_" + str(time.time())
143
+ fps = 30
144
+ save_path = video_file_name + ".mp4"
145
+ start_frame_dupe_amount = 15
146
+ last_frame_dupe_amount = 15
147
+
148
+ write_video(save_path, all_frames, fps, False,
149
+ start_frame_dupe_amount, last_frame_dupe_amount)
150
+ return save_path
151
+
152
+
153
+ def zoom_app():
154
+ with gr.Blocks():
155
+ with gr.Row():
156
+ with gr.Column():
157
+
158
+ outpaint_prompts = gr.Dataframe(
159
+ type="array",
160
+ headers=["outpaint steps", "prompt"],
161
+ datatype=["number", "str"],
162
+ row_count=1,
163
+ col_count=(2, "fixed"),
164
+ value=[[0, default_prompt]],
165
+ wrap=True
166
+ )
167
+
168
+ outpaint_negative_prompt = gr.Textbox(
169
+ lines=1,
170
+ value=default_negative_prompt,
171
+ label='Negative Prompt'
172
+ )
173
+
174
+ outpaint_steps = gr.Slider(
175
+ minimum=5,
176
+ maximum=25,
177
+ step=1,
178
+ value=12,
179
+ label='Total Outpaint Steps'
180
+ )
181
+ with gr.Accordion("Advanced Options", open=False):
182
+ model_id = gr.Dropdown(
183
+ choices=inpaint_model_list,
184
+ value=inpaint_model_list[0],
185
+ label='Pre-trained Model ID'
186
+ )
187
+
188
+ guidance_scale = gr.Slider(
189
+ minimum=0.1,
190
+ maximum=15,
191
+ step=0.1,
192
+ value=7,
193
+ label='Guidance Scale'
194
+ )
195
+
196
+ sampling_step = gr.Slider(
197
+ minimum=1,
198
+ maximum=100,
199
+ step=1,
200
+ value=50,
201
+ label='Sampling Steps for each outpaint'
202
+ )
203
+ init_image = gr.Image(type="pil",label="custom initial image")
204
+ generate_btn = gr.Button(value='Generate video')
205
+
206
+ with gr.Column():
207
+ output_image = gr.Video(label='Output', format="mp4").style(
208
+ width=512, height=512)
209
+
210
+ generate_btn.click(
211
+ fn=zoom,
212
+ inputs=[
213
+ model_id,
214
+ outpaint_prompts,
215
+ outpaint_negative_prompt,
216
+ outpaint_steps,
217
+ guidance_scale,
218
+ sampling_step,
219
+ init_image
220
+ ],
221
+ outputs=output_image,
222
+ )
223
+
224
+
225
+ import gradio as gr
226
+
227
+ app = gr.Blocks()
228
+ with app:
229
+ gr.HTML(
230
+ """
231
+ <h2 style='text-align: center'>
232
+ <a href="https://github.com/v8hid/infinite-zoom-stable-diffusion/" style="display:inline-block;">
233
+ <img src="https://img.shields.io/static/v1?label=github&message=repository&color=blue&style=for-the-badge&logo=github&logoColor=white" alt="build status">
234
+ </a>
235
+ <br>
236
+ Text to Video - Infinite zoom effect
237
+ </h2>
238
+ """
239
+ )
240
+ zoom_app()
241
+
242
+ app.launch(debug=True,enable_queue=True)