Spaces:
Sleeping
Sleeping
import streamlit as st | |
from hugchat import hugchat | |
from hugchat.login import Login | |
from huggingface_hub import InferenceClient | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# App title | |
st.set_page_config(page_title="π€π¬ HugChat") | |
# Hugging Face Credentials | |
with st.sidebar: | |
st.title('π€π¬ HugChat') | |
if ('EMAIL' in st.secrets) and ('PASS' in st.secrets): | |
st.success('HuggingFace Login credentials already provided!', icon='β ') | |
hf_email = st.secrets['EMAIL'] | |
hf_pass = st.secrets['PASS'] | |
else: | |
hf_email = st.text_input('Enter E-mail:', type='password') | |
hf_pass = st.text_input('Enter password:', type='password') | |
if not (hf_email and hf_pass): | |
st.warning('Please enter your credentials!', icon='β οΈ') | |
else: | |
st.success('Proceed to entering your prompt message!', icon='π') | |
st.markdown('π Learn how to build this app in this [blog](https://blog.streamlit.io/how-to-build-an-llm-powered-chatbot-with-streamlit/)!') | |
# Store LLM generated responses | |
if "messages" not in st.session_state.keys(): | |
st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}] | |
# Display chat messages | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.write(message["content"]) | |
# Function for generating LLM response | |
def generate_response(messages, email, passwd): | |
for message in client.chat_completion( | |
messages, | |
max_tokens=500, | |
stream=True, | |
temperature=0.7, | |
top_p=0.9, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
# def generate_response(prompt_input, email, passwd): | |
# # Hugging Face Login | |
# cookie_path_dir = "./cookies/" | |
# sign = Login(email, passwd) | |
# cookies = sign.login(cookie_dir_path=cookie_path_dir, save_cookies=True) | |
# # Create ChatBot | |
# chatbot = hugchat.ChatBot(cookies=cookies.get_dict()) | |
# return chatbot.chat(prompt_input) | |
# # Function for generating LLM response based on "HuggingFaceH4/zephyr-7b-beta" | |
# def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p,): | |
# messages = [{"role": "system", "content": system_message}] | |
# for val in history: | |
# if val[0]: | |
# messages.append({"role": "user", "content": val[0]}) | |
# if val[1]: | |
# messages.append({"role": "assistant", "content": val[1]}) | |
# messages.append({"role": "user", "content": message}) | |
# response = "" | |
# for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
# User-provided prompt | |
if prompt := st.chat_input(disabled=not (hf_email and hf_pass)): | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
with st.chat_message("user"): | |
st.write(prompt) | |
# Generate a new response if last message is not from assistant | |
if st.session_state.messages[-1]["role"] != "assistant": | |
with st.chat_message("assistant"): | |
with st.spinner("Thinking..."): | |
response = generate_response(prompt, hf_email, hf_pass) | |
st.write(response) | |
message = {"role": "assistant", "content": response} | |
st.session_state.messages.append(message) |