Spaces:
Sleeping
Sleeping
aaronespasa
commited on
Commit
·
02c225a
1
Parent(s):
a5e6fcf
Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,10 @@ import os
|
|
6 |
import numpy as np
|
7 |
from PIL import Image
|
8 |
import zipfile
|
|
|
|
|
|
|
|
|
9 |
|
10 |
with zipfile.ZipFile("examples.zip","r") as zip_ref:
|
11 |
zip_ref.extractall(".")
|
@@ -25,7 +29,7 @@ model = InceptionResnetV1(
|
|
25 |
device=DEVICE
|
26 |
)
|
27 |
|
28 |
-
checkpoint = torch.load("resnetinceptionv1_epoch_32.pth"
|
29 |
model.load_state_dict(checkpoint['model_state_dict'])
|
30 |
model.to(DEVICE)
|
31 |
model.eval()
|
@@ -52,11 +56,24 @@ def predict(input_image:Image.Image, true_label:str):
|
|
52 |
face = F.interpolate(face, size=(256, 256), mode='bilinear', align_corners=False)
|
53 |
|
54 |
# convert the face into a numpy array to be able to plot it
|
55 |
-
|
|
|
56 |
|
57 |
face = face.to(DEVICE)
|
58 |
face = face.to(torch.float32)
|
59 |
face = face / 255.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
with torch.no_grad():
|
61 |
output = torch.sigmoid(model(face).squeeze(0))
|
62 |
prediction = "real" if output.item() < 0.5 else "fake"
|
@@ -68,7 +85,7 @@ def predict(input_image:Image.Image, true_label:str):
|
|
68 |
'real': real_prediction,
|
69 |
'fake': fake_prediction
|
70 |
}
|
71 |
-
return confidences, true_label,
|
72 |
|
73 |
interface = gr.Interface(
|
74 |
fn=predict,
|
@@ -79,7 +96,7 @@ interface = gr.Interface(
|
|
79 |
outputs=[
|
80 |
gr.outputs.Label(label="Class"),
|
81 |
"text",
|
82 |
-
gr.outputs.Image(label="Face")
|
83 |
],
|
84 |
examples=[[examples[i]["path"], examples[i]["label"]] for i in range(10)]
|
85 |
).launch()
|
|
|
6 |
import numpy as np
|
7 |
from PIL import Image
|
8 |
import zipfile
|
9 |
+
import cv2
|
10 |
+
from pytorch_grad_cam import GradCAM
|
11 |
+
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
|
12 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image
|
13 |
|
14 |
with zipfile.ZipFile("examples.zip","r") as zip_ref:
|
15 |
zip_ref.extractall(".")
|
|
|
29 |
device=DEVICE
|
30 |
)
|
31 |
|
32 |
+
checkpoint = torch.load("resnetinceptionv1_epoch_32.pth")
|
33 |
model.load_state_dict(checkpoint['model_state_dict'])
|
34 |
model.to(DEVICE)
|
35 |
model.eval()
|
|
|
56 |
face = F.interpolate(face, size=(256, 256), mode='bilinear', align_corners=False)
|
57 |
|
58 |
# convert the face into a numpy array to be able to plot it
|
59 |
+
prev_face = face.squeeze(0).permute(1, 2, 0).cpu().detach().int().numpy()
|
60 |
+
prev_face = prev_face.astype('uint8')
|
61 |
|
62 |
face = face.to(DEVICE)
|
63 |
face = face.to(torch.float32)
|
64 |
face = face / 255.0
|
65 |
+
face_image_to_plot = face.squeeze(0).permute(1, 2, 0).cpu().detach().int().numpy()
|
66 |
+
|
67 |
+
target_layers=[model.block8.branch1[-1]]
|
68 |
+
use_cuda = True if torch.cuda.is_available() else False
|
69 |
+
cam = GradCAM(model=model, target_layers=target_layers, use_cuda=use_cuda)
|
70 |
+
targets = [ClassifierOutputTarget(0)]
|
71 |
+
|
72 |
+
grayscale_cam = cam(input_tensor=face, targets=targets, eigen_smooth=True)
|
73 |
+
grayscale_cam = grayscale_cam[0, :]
|
74 |
+
visualization = show_cam_on_image(face_image_to_plot, grayscale_cam, use_rgb=True)
|
75 |
+
face_with_mask = cv2.addWeighted(prev_face, 1, visualization, 0.5, 0)
|
76 |
+
|
77 |
with torch.no_grad():
|
78 |
output = torch.sigmoid(model(face).squeeze(0))
|
79 |
prediction = "real" if output.item() < 0.5 else "fake"
|
|
|
85 |
'real': real_prediction,
|
86 |
'fake': fake_prediction
|
87 |
}
|
88 |
+
return confidences, true_label, face_with_mask
|
89 |
|
90 |
interface = gr.Interface(
|
91 |
fn=predict,
|
|
|
96 |
outputs=[
|
97 |
gr.outputs.Label(label="Class"),
|
98 |
"text",
|
99 |
+
gr.outputs.Image(label="Face with Explainability")
|
100 |
],
|
101 |
examples=[[examples[i]["path"], examples[i]["label"]] for i in range(10)]
|
102 |
).launch()
|