File size: 3,070 Bytes
8b8b0b2
bb35b84
 
49d2457
8b8b0b2
49d2457
 
 
 
 
 
8b8b0b2
 
49d2457
 
 
276c17b
49d2457
 
 
bb35b84
8b8b0b2
bb35b84
49d2457
 
 
bb35b84
49d2457
 
bb35b84
8b8b0b2
 
49d2457
8b8b0b2
49d2457
 
 
8b8b0b2
 
49d2457
 
bb35b84
49d2457
 
5b4a85e
49d2457
 
 
 
 
 
 
8b8b0b2
49d2457
 
 
 
8b8b0b2
49d2457
8b8b0b2
 
 
1300829
26ec510
 
1300829
8b8b0b2
49d2457
 
23ac168
49d2457
23ac168
db3d063
23ac168
49d2457
 
af05c23
49d2457
 
23ac168
49d2457
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer, pipeline
from threading import Thread
import gradio as gr

DEVICE = "cpu"
if torch.cuda.is_available():
  DEVICE = "cuda"

# The huggingface model id for phi-2 instruct model
checkpoint = "rasyosef/phi-2-instruct-v0.1"

# Download and load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(
    checkpoint,
    torch_dtype=torch.float32,
    device_map=DEVICE
  )


# Text generation pipeline
phi2 = pipeline(
    "text-generation",
    tokenizer=tokenizer,
    model=model,
    pad_token_id=tokenizer.eos_token_id,
    eos_token_id=[tokenizer.eos_token_id],
    device_map=DEVICE
)

# Function that accepts a prompt and generates text using the phi2 pipeline
def generate(message, chat_history, max_new_tokens=64):

  history = [
      {"role": "system", "content": "You are Phi, a helpful AI assistant made by Microsoft and RasYosef. User will you give you a task. Your goal is to complete the task as faithfully as you can."}
  ]

  for sent, received in chat_history:
    history.append({"role": "user", "content": sent})
    history.append({"role": "assistant", "content": received})

  history.append({"role": "user", "content": message})
  #print(history)

  if len(tokenizer.apply_chat_template(history)) > 512:
    yield "chat history is too long"
  else:
    # Streamer
    streamer = TextIteratorStreamer(tokenizer=tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=300.0)
    thread = Thread(target=phi2, kwargs={"text_inputs":history, "max_new_tokens":max_new_tokens, "streamer":streamer})
    thread.start()

    generated_text = ""
    for word in streamer:
      generated_text += word
      response = generated_text.strip()

      yield response

# Chat interface with gradio
with gr.Blocks() as demo:
  gr.Markdown("""
  # Phi-2 Chat Demo
  This chatbot was created using a finetuned version of Microsoft's 2.7 billion parameter Phi 2 transformer model, [phi-2-instruct-v0.1](https://huggingface.co/rasyosef/phi-2-instruct-v0.1) that has underwent a post-training process that incorporates both **supervised fine-tuning** and **direct preference optimization** for instruction following.
  """)

  tokens_slider = gr.Slider(8, 256, value=64, label="Maximum new tokens", info="A larger `max_new_tokens` parameter value gives you longer text responses but at the cost of a slower response time.")

  chatbot = gr.ChatInterface(
    chatbot=gr.Chatbot(height=400),
    fn=generate,
    additional_inputs=[tokens_slider],
    stop_btn=None,
    examples=[
        ["Hi"],
        ["What's the German word for 'car'?"],
        ["Molly and Abigail want to attend a beauty and modeling contest. They both want to buy new pairs of shoes and dresses. Molly buys a pair of shoes which costs $40 and a dress which costs $160. How much should Abigail budget if she wants to spend half of what Molly spent on the pair of shoes and dress?"],
      ]
  )

demo.queue().launch(debug=True)