File size: 5,393 Bytes
17f433a
 
 
 
 
 
 
 
 
7dca4ae
 
af4cb72
 
7dca4ae
ba27c53
 
 
 
 
7dca4ae
 
ba27c53
7dca4ae
 
17f433a
 
 
92b10aa
7dca4ae
 
17f433a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92b10aa
17f433a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import gradio as gr
from PIL import Image
import numpy as np
from utils import perspective_transform
from ultralytics import YOLO

max_len = 10

def ocr(plate_image, ocr_model):
  try:
    if 'yolo' in ocr_model:
      model = YOLO(f'./weights/{ocr_model}.pt', task='detect')
      # model = YOLO(f'./weights/best.pt', task='detect')
      preds = model.predict(plate_image)
      pred_data = [list(pred.boxes.data.cpu().numpy()[0]) for pred in preds[0]]
      x_sorted_preds = sorted(pred_data, key=lambda x:x[0])
      pred_cls = np.array(x_sorted_preds,dtype=np.int32)[:,-1]
      return ''.join([model.names[cls] for cls in pred_cls])
       
    else:
      return ''
        
  except Exception : 
    return 'error'

def process_image(image, detection_model, ocr_model, yolo_thresh, perpective_width, perpective_height):
    task = 'obb' if 'obb' in detection_model else 'detect'
    model = YOLO(f'./weights/{detection_model}.pt', task=task)

    predict  = model(image, conf=yolo_thresh)
    
    if 'obb' in detection_model:
      obb_crops, transformed = perspective_transform(predict, dst_width=perpective_width, dst_height=perpective_height)  
      crop_results = [(plate, ocr(plate, ocr_model)) for plate in obb_crops]
      transform_results = [(plate, ocr(plate, ocr_model)) for plate in transformed]
      
      return crop_results, transform_results

    else:
      boxes = np.array(predict[0].boxes.xyxy.cpu().numpy(),dtype=np.int32)
      crops = [image[y1:y2,x1:x2,:] for x1,y1,x2,y2 in boxes]
      results = [(plate,ocr(plate,ocr_model)) for plate in crops]
    
      return results, []


def create_interface():
    with gr.Blocks(css="footer{display:none !important}") as demo:
        with gr.Row():
            with gr.Column(scale=1):
              detection_model = gr.Dropdown(label="Detection Model", choices=["yolov8-m", "yolov8-obb-m","yolov8-s", "yolov8-obb-s"], value="yolov8-m")
              ocr_model = gr.Dropdown(label="OCR Model", choices=["yolov32c", "trocr"], value="yolov32c")
              yolo_thresh = gr.Slider(minimum=0.0, maximum=1.0, label='yolo_threshold')
              with gr.Row():
                perpective_width = gr.Slider(minimum=100, maximum=500, label='perpective_width')
                perpective_height = gr.Slider(minimum=50, maximum=200, label='perpective_height')

            with gr.Column(scale=3):
                input_image = gr.Image(label="Upload Image", type="numpy")


        with gr.Row() as r1:
          c_img1 = gr.Image(visible=False)
          c_text1 = gr.Textbox(visible=False)
          t_img1 = gr.Image(visible=False)
          t_text1 = gr.Textbox(visible=False)
      
        with gr.Row() as r2:
          c_img2 = gr.Image(visible=False)
          c_text2 = gr.Textbox(visible=False)
          t_img2 = gr.Image(visible=False)
          t_text2 = gr.Textbox(visible=False)

        with gr.Row() as r3:
          c_img3 = gr.Image(visible=False)
          c_text3 = gr.Textbox(visible=False)
          t_img3 = gr.Image(visible=False)
          t_text3 = gr.Textbox(visible=False)

        with gr.Row() as r4:
          c_img4 = gr.Image(visible=False)
          c_text4= gr.Textbox(visible=False)
          t_img4 = gr.Image(visible=False)
          t_text4 = gr.Textbox(visible=False)

        with gr.Row() as r5:
          c_img5 = gr.Image(visible=False)
          c_text5 = gr.Textbox(visible=False)
          t_img5 = gr.Image(visible=False)
          t_text5 = gr.Textbox(visible=False)
          
        #o = gr.Textbox()
        def main_fn(image, detection_model, ocr_model, yolo_thresh, perpective_width, perpective_height):
            crop_results, transform_results = process_image(image, detection_model, ocr_model, yolo_thresh, perpective_width, perpective_height)
            
            crop_output = []
            for i,(crop, c_text) in enumerate(crop_results):
              crop_output.append(gr.Image(label=f'clp{i+1}', value=crop, visible=True))
              crop_output.append(gr.Textbox(label=f'text{i+1}',value=c_text, visible=True))

            for j in range((max_len - len(crop_output)) //2):
              crop_output.append(gr.Image(visible=False))
              crop_output.append(gr.Textbox(visible=False))

            transform_output = []
            for i,(transform, t_text) in enumerate(transform_results):
              transform_output.append(gr.Image(label=f'tlp{i+1}', value=transform, visible=True))
              transform_output.append(gr.Textbox(label=f'text{i+1}',value=t_text, visible=True))

            for j in range((max_len - len(transform_output)) //2):
              transform_output.append(gr.Image(visible=False))
              transform_output.append(gr.Textbox(visible=False))
        
        
            return crop_output + transform_output
            # return len(crop_results)
          
        
        submit_button = gr.Button("Process Image")
        submit_button.click(
            fn=main_fn,
            inputs=[input_image, detection_model, ocr_model,yolo_thresh, perpective_width, perpective_height],
            outputs=[c_img1, c_text1, c_img2, c_text2, c_img3, c_text3, c_img4, c_text4, c_img5, c_text5, t_img1, t_text1, t_img2, t_text2, t_img3, t_text3, t_img4, t_text4, t_img5, t_text5]
            # outputs = o
        )

    return demo

# Run the Gradio app
demo = create_interface()
demo.launch()