Spaces:
Runtime error
Runtime error
rasmus1610
commited on
Commit
•
e22d4b7
1
Parent(s):
d02f3a9
reranking and polishing
Browse files- .gitattributes +1 -0
- __pycache__/app.cpython-310.pyc +0 -0
- __pycache__/llm.cpython-310.pyc +0 -0
- __pycache__/qa.cpython-310.pyc +0 -0
- app.py +19 -51
- carotid_embeddings_sentence_transformers.csv +0 -0
- carotid_embeddings_sentence_transformers_061123.csv +3 -0
- llm.py +27 -0
- qa.py +91 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
carotid_embeddings_sentence_transformers_061123.csv filter=lfs diff=lfs merge=lfs -text
|
__pycache__/app.cpython-310.pyc
CHANGED
Binary files a/__pycache__/app.cpython-310.pyc and b/__pycache__/app.cpython-310.pyc differ
|
|
__pycache__/llm.cpython-310.pyc
ADDED
Binary file (1.22 kB). View file
|
|
__pycache__/qa.cpython-310.pyc
ADDED
Binary file (4.4 kB). View file
|
|
app.py
CHANGED
@@ -1,66 +1,32 @@
|
|
1 |
import openai
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
-
from sentence_transformers import SentenceTransformer
|
5 |
import re
|
6 |
import gradio as gr
|
7 |
import json
|
8 |
-
import
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
cosine_similarity = np.dot(vector1, vector2) / (np.linalg.norm(vector1) * np.linalg.norm(vector2))
|
13 |
-
return cosine_similarity
|
14 |
|
15 |
-
|
16 |
-
embedding = model.encode(query)
|
17 |
-
if dot:
|
18 |
-
df['similarities'] = df.embeddings.apply(lambda x: x@embedding)
|
19 |
-
print("using dot product")
|
20 |
-
else:
|
21 |
-
df['similarities'] = df.embeddings.apply(lambda x: cos_sim(x, embedding))
|
22 |
-
print("using cosine similarity")
|
23 |
-
res = df.sort_values('similarities', ascending=False).head(n)
|
24 |
-
return res
|
25 |
-
|
26 |
-
def create_prompt(context, question):
|
27 |
-
return f"""
|
28 |
-
Context information is below.
|
29 |
-
---------------------
|
30 |
-
{context}
|
31 |
-
---------------------
|
32 |
-
Given the context information and not prior knowledge, answer the query.
|
33 |
-
Query: {question}
|
34 |
-
Answer: \
|
35 |
-
"""
|
36 |
-
|
37 |
-
|
38 |
-
def answer_question(question, model="gpt-3.5-turbo",n=3):
|
39 |
-
r = sim_search(df, question,n=n)
|
40 |
-
context = "\n\n".join(r.chunks)
|
41 |
-
prompt = create_prompt(context, question)
|
42 |
-
response = openai.ChatCompletion.create(
|
43 |
-
model="gpt-3.5-turbo",
|
44 |
-
messages=[
|
45 |
-
{"role": "system", "content": "You are a helpful assistant answering questions in german. You answer only in german. If you do not know an answer you say it. You do not fabricate answers."},
|
46 |
-
{"role": "user", "content": prompt},
|
47 |
-
]
|
48 |
-
)
|
49 |
-
return response.choices[0].message.content
|
50 |
-
|
51 |
-
df = pd.read_csv("carotid_embeddings_sentence_transformers.csv")
|
52 |
-
df["embeddings"] = df.embeddings.apply(json.loads)
|
53 |
-
model = SentenceTransformer('thenlper/gte-base')
|
54 |
|
55 |
def gradio_answer(input):
|
56 |
-
return answer_question(input, n=
|
57 |
|
58 |
desc_string = """
|
59 |
-
In dieser Demo kannst du einer KI Fragen zum Inhalt der ['S3-Leitlinie Diagnostik, Therapie und Nachsorge der extracraniellen Carotisstenose'](https://register.awmf.org/de/leitlinien/detail/004-028) stellen. Ein paar
|
|
|
|
|
60 |
|
61 |
-
|
|
|
|
|
62 |
|
63 |
-
|
64 |
"""
|
65 |
|
66 |
demo = gr.Interface(
|
@@ -70,9 +36,11 @@ demo = gr.Interface(
|
|
70 |
title="🧠 Q&A S3 Leitlinie Carotisstenose",
|
71 |
description=desc_string,
|
72 |
examples=[
|
73 |
-
"
|
74 |
"Ist eine ambulante Therapie der Carotisstenose mittels CEA oder CAS möglich und sinnvoll?",
|
75 |
-
"
|
|
|
|
|
76 |
)
|
77 |
|
78 |
demo.launch()
|
|
|
1 |
import openai
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
+
from sentence_transformers import SentenceTransformer, CrossEncoder
|
5 |
import re
|
6 |
import gradio as gr
|
7 |
import json
|
8 |
+
import ast
|
9 |
+
from llm import OpenAILLM
|
10 |
+
from qa import QuestionAnswerer
|
11 |
|
12 |
+
df = pd.read_csv("/Users/mariusvach/Code/python/leitlinien_chatbot/carotis_chatbot/carotid_embeddings_sentence_transformers_061123.csv")
|
13 |
+
df["embeddings"] = df.embeddings.apply(ast.literal_eval)
|
|
|
|
|
14 |
|
15 |
+
qa = QuestionAnswerer(df, SentenceTransformer('thenlper/gte-base'), OpenAILLM('gpt-3.5-turbo-16k'), CrossEncoder('cross-encoder/ms-marco-TinyBERT-L-2-v2'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
def gradio_answer(input):
|
18 |
+
return qa.answer_question(input, n=5, )
|
19 |
|
20 |
desc_string = """
|
21 |
+
In dieser Demo kannst du einer KI Fragen zum Inhalt der ['S3-Leitlinie Diagnostik, Therapie und Nachsorge der extracraniellen Carotisstenose'](https://register.awmf.org/de/leitlinien/detail/004-028) stellen. Ein paar Beispiel-Fragen findest du unten.
|
22 |
+
|
23 |
+
## Wie funktioniert das?
|
24 |
|
25 |
+
1. Die Frage wird durch ein neuronalen Netzwerk in eine Vektor-Repräsentation ('Embedding') umgewandelt.
|
26 |
+
2. Die Ähnlichkeit des 'Frage-Vektors' wird mit den genauso erzeugten Vektoren von Textpassagen der Leitlinie verglichen.
|
27 |
+
3. Ein ‚Large Language Model (LLM)‘ beantwortet nun mit Hilfe der ähnlichsten Textpassagen die gestellte Frage.
|
28 |
|
29 |
+
Diese Technik heißt [‚Retrieval-augmented Generation (RAG)'](https://research.ibm.com/blog/retrieval-augmented-generation-RAG). Hierdurch kann verhindert werden, dass LLMs Fakten einfach erfinden.
|
30 |
"""
|
31 |
|
32 |
demo = gr.Interface(
|
|
|
36 |
title="🧠 Q&A S3 Leitlinie Carotisstenose",
|
37 |
description=desc_string,
|
38 |
examples=[
|
39 |
+
"Welche Sensitivität hatte die Transcranielle Doppler-Sonographie (TCD) bei der Detektion eines perioperativen Schlaganfalls?",
|
40 |
"Ist eine ambulante Therapie der Carotisstenose mittels CEA oder CAS möglich und sinnvoll?",
|
41 |
+
"Wie viele zerebrale Ischämien in Deutschland werden durch >50%ige Stenosen oder Verschlüsse der extracraniellen A. carotis verursacht?",
|
42 |
+
"Welche Symptome können durch Stenosen der A. carotis verursacht werden?"
|
43 |
+
]
|
44 |
)
|
45 |
|
46 |
demo.launch()
|
carotid_embeddings_sentence_transformers.csv
DELETED
The diff for this file is too large to render.
See raw diff
|
|
carotid_embeddings_sentence_transformers_061123.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c16207bb8fbb5f55fdf33300e3d75043d36e8fb562854ebd585c20f2f595b0c0
|
3 |
+
size 10699905
|
llm.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import openai
|
2 |
+
import os
|
3 |
+
|
4 |
+
openai.api_key = os.environ["OPENAI_API_KEY"]
|
5 |
+
|
6 |
+
class BaseLLM:
|
7 |
+
def __init__(self, model):
|
8 |
+
self.model = model
|
9 |
+
|
10 |
+
def get_response(self, system_prompt, query):
|
11 |
+
raise NotImplementedError
|
12 |
+
|
13 |
+
|
14 |
+
class OpenAILLM(BaseLLM):
|
15 |
+
def __init__(self, model):
|
16 |
+
self.model = model
|
17 |
+
|
18 |
+
def get_response(self, system_prompt, query, **kwargs):
|
19 |
+
response = openai.ChatCompletion.create(
|
20 |
+
model=self.model,
|
21 |
+
messages=[
|
22 |
+
{"role": "system", "content": system_prompt},
|
23 |
+
{"role": "user", "content": query},
|
24 |
+
],
|
25 |
+
**kwargs,
|
26 |
+
)
|
27 |
+
return response.choices[0].message.content
|
qa.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
from rank_bm25 import BM25Okapi
|
4 |
+
|
5 |
+
from llm import OpenAILLM
|
6 |
+
|
7 |
+
def cosine_similarity(vector1, vector2):
|
8 |
+
return np.dot(vector1, vector2) / (np.linalg.norm(vector1) * np.linalg.norm(vector2))
|
9 |
+
|
10 |
+
class QuestionAnswerer:
|
11 |
+
def __init__(self, docs, embedding_model, llm=OpenAILLM('gpt-3.5-turbo'), cross_encoder=None):
|
12 |
+
self.docs = docs
|
13 |
+
self.bm25 = BM25Okapi([c.split(" ") for c in self.docs.chunks.values[1:]])
|
14 |
+
self.embedding_model = embedding_model
|
15 |
+
self.llm = llm
|
16 |
+
self.cross_encoder = cross_encoder
|
17 |
+
|
18 |
+
def sim_search(self, query, n=10, use_hyde=False, use_dot_product=False):
|
19 |
+
if use_hyde:
|
20 |
+
generated_doc = self._get_generated_doc(query)
|
21 |
+
print("generated document (hyde): \n", generated_doc)
|
22 |
+
embedding = self.embedding_model.encode(generated_doc)
|
23 |
+
else:
|
24 |
+
embedding = self.embedding_model.encode(query)
|
25 |
+
|
26 |
+
if use_dot_product:
|
27 |
+
similarities = self.docs['embeddings'].apply(lambda x: np.dot(x, embedding))
|
28 |
+
else:
|
29 |
+
similarities = self.docs['embeddings'].apply(lambda x: cosine_similarity(x, embedding))
|
30 |
+
|
31 |
+
self.docs['similarities'] = similarities
|
32 |
+
return self.docs.sort_values('similarities', ascending=False).head(n)
|
33 |
+
|
34 |
+
def sim_search_rerank(self, query, n=10, sim_search_n=100, **kwargs):
|
35 |
+
search_results = self.sim_search(query, n=sim_search_n, use_hyde=False, **kwargs)
|
36 |
+
reranked_results = self.rerank(search_results, query)
|
37 |
+
return reranked_results[:n]
|
38 |
+
|
39 |
+
def sim_search_bm25(self, query, n=10):
|
40 |
+
tokenized_query = query.split(" ")
|
41 |
+
doc_scores = self.bm25.get_scores(tokenized_query)
|
42 |
+
self.docs['bm25'] = np.insert(doc_scores, 0, 0) #hack because I have to remove the first item, because I cannot split it
|
43 |
+
result = self.docs.sort_values('bm25', ascending=False)[:n]
|
44 |
+
return result
|
45 |
+
|
46 |
+
def _create_prompt(self, context, question):
|
47 |
+
return f"""
|
48 |
+
Context information is below.
|
49 |
+
---------------------
|
50 |
+
{context}
|
51 |
+
---------------------
|
52 |
+
Given the context information and not prior knowledge, answer the query.
|
53 |
+
Query: {question}
|
54 |
+
Answer: \
|
55 |
+
"""
|
56 |
+
|
57 |
+
def _get_generated_doc(self, question):
|
58 |
+
prompt = f"""Write a guideline section in German answering the question below
|
59 |
+
---------------------
|
60 |
+
Question: {question}
|
61 |
+
---------------------
|
62 |
+
Answer: \
|
63 |
+
"""
|
64 |
+
system_prompt = "You are an experienced radiologist answering medical questions. You answer only in German."
|
65 |
+
return self.llm.get_response(system_prompt, prompt)
|
66 |
+
|
67 |
+
|
68 |
+
def rerank(self, docs, query):
|
69 |
+
inp = [[query, doc.chunks] for doc in docs.itertuples()]
|
70 |
+
cross_scores = self.cross_encoder.predict(inp) if self.cross_encoder else []
|
71 |
+
docs['cross_score'] = cross_scores
|
72 |
+
return docs.sort_values('cross_score', ascending=False)
|
73 |
+
|
74 |
+
def answer_question(self, question, n=3, use_hyde=False, use_reranker=False, use_bm25=False):
|
75 |
+
if use_reranker and use_hyde:
|
76 |
+
print('reranking together with hyde is not supported yet')
|
77 |
+
if use_reranker:
|
78 |
+
search_results = self.sim_search_rerank(question, n=n)
|
79 |
+
if use_bm25:
|
80 |
+
search_results = self.sim_search_bm25(question, n=n)
|
81 |
+
else:
|
82 |
+
search_results = self.sim_search(question, n=n, use_hyde=use_hyde)
|
83 |
+
|
84 |
+
context = "\n\n".join(search_results['chunks'])
|
85 |
+
|
86 |
+
prompt = self._create_prompt(context, question)
|
87 |
+
|
88 |
+
system_prompt = "You are a helpful assistant answering questions in German. You answer only in German. If you do not know an answer you say it. You do not fabricate answers."
|
89 |
+
|
90 |
+
return self.llm.get_response(system_prompt, prompt)
|
91 |
+
|