Spaces:
Sleeping
Sleeping
rararara9999
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,45 @@
|
|
1 |
-
|
2 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
import
|
8 |
-
|
|
|
9 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def main():
|
12 |
st.title("Face Mask Detection with HuggingFace Spaces")
|
13 |
st.write("Upload an image to analyze whether the person is wearing a mask:")
|
@@ -19,10 +51,6 @@ def main():
|
|
19 |
st.write("")
|
20 |
st.write("Classifying...")
|
21 |
|
22 |
-
# Load the fine-tuned model and image processor
|
23 |
-
model_checkpoint = "rararara9999/Model"
|
24 |
-
image_processor = AutoImageProcessor.from_pretrained(model_checkpoint)
|
25 |
-
|
26 |
# Preprocess the image
|
27 |
inputs = image_processor(images=image, return_tensors="pt")
|
28 |
|
@@ -42,3 +70,4 @@ def main():
|
|
42 |
|
43 |
if __name__ == "__main__":
|
44 |
main()
|
|
|
|
1 |
+
import subprocess
|
|
|
2 |
|
3 |
+
# Install the required packages
|
4 |
+
subprocess.check_call(["pip", "install", "--upgrade", "pip"])
|
5 |
+
subprocess.check_call(["pip", "install", "-U", "transformers"])
|
6 |
+
subprocess.check_call(["pip", "install", "-U", "accelerate"])
|
7 |
+
subprocess.check_call(["pip", "install", "datasets"])
|
8 |
+
subprocess.check_call(["pip", "install", "evaluate"])
|
9 |
+
subprocess.check_call(["pip", "install", "scikit-learn"])
|
10 |
+
subprocess.check_call(["pip", "install", "torchvision"])
|
11 |
|
12 |
+
from transformers import AutoModelForImageClassification, AutoImageProcessor
|
13 |
+
import torch
|
14 |
+
import numpy as np
|
15 |
from PIL import Image
|
16 |
+
import streamlit as st
|
17 |
+
|
18 |
+
# Load the fine-tuned model and image processor
|
19 |
+
model_checkpoint = "rararara9999/Model"
|
20 |
+
model = AutoModelForImageClassification.from_pretrained(model_checkpoint, num_labels=2)
|
21 |
+
image_processor = AutoImageProcessor.from_pretrained(model_checkpoint)
|
22 |
+
|
23 |
+
# Standalone Test Script
|
24 |
+
image_path = "C:\Users\crc96\Desktop\HKUST\testing_picture"
|
25 |
+
def test_model(image_path):
|
26 |
+
# Load and preprocess the image
|
27 |
+
image = Image.open(image_path)
|
28 |
+
inputs = image_processor(images=image, return_tensors="pt")
|
29 |
+
|
30 |
+
# Get model predictions
|
31 |
+
outputs = model(**inputs)
|
32 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
33 |
+
predictions = predictions.cpu().detach().numpy()
|
34 |
|
35 |
+
# Get the index of the largest output value
|
36 |
+
max_index = np.argmax(predictions)
|
37 |
+
labels = ["Wearing Mask", "Not Wearing Mask"]
|
38 |
+
predicted_label = labels[max_index]
|
39 |
+
|
40 |
+
print(f"The predicted label is {predicted_label}")
|
41 |
+
|
42 |
+
# Streamlit App for Interactive Testing
|
43 |
def main():
|
44 |
st.title("Face Mask Detection with HuggingFace Spaces")
|
45 |
st.write("Upload an image to analyze whether the person is wearing a mask:")
|
|
|
51 |
st.write("")
|
52 |
st.write("Classifying...")
|
53 |
|
|
|
|
|
|
|
|
|
54 |
# Preprocess the image
|
55 |
inputs = image_processor(images=image, return_tensors="pt")
|
56 |
|
|
|
70 |
|
71 |
if __name__ == "__main__":
|
72 |
main()
|
73 |
+
|