Spaces:
Sleeping
Sleeping
rararara9999
commited on
Commit
•
62d494a
1
Parent(s):
24ea011
Delete app.py
Browse files
app.py
DELETED
@@ -1,158 +0,0 @@
|
|
1 |
-
import subprocess
|
2 |
-
|
3 |
-
# Install the required packages
|
4 |
-
subprocess.check_call(["pip", "install", "-U", "git+https://github.com/huggingface/transformers.git"])
|
5 |
-
subprocess.check_call(["pip", "install", "-U", "git+https://github.com/huggingface/accelerate.git"])
|
6 |
-
subprocess.check_call(["pip", "install", "datasets"])
|
7 |
-
subprocess.check_call(["pip", "install", "evaluate"])
|
8 |
-
subprocess.check_call(["pip", "install", "scikit-learn"])
|
9 |
-
subprocess.check_call(["pip", "install", "torchvision"])
|
10 |
-
|
11 |
-
model_checkpoint = "Heem2/Facemask-detection"
|
12 |
-
batch_size = 128
|
13 |
-
|
14 |
-
from datasets import load_dataset
|
15 |
-
from evaluate import load
|
16 |
-
|
17 |
-
metric = load("accuracy")
|
18 |
-
|
19 |
-
# Load the dataset directly from Hugging Face
|
20 |
-
dataset = load_dataset("DamarJati/Face-Mask-Detection")
|
21 |
-
labels = dataset["train"].features["label"].names
|
22 |
-
label2id, id2label = dict(), dict()
|
23 |
-
for i, label in enumerate(labels):
|
24 |
-
label2id[label] = i
|
25 |
-
id2label[i] = label
|
26 |
-
|
27 |
-
from transformers import AutoImageProcessor
|
28 |
-
image_processor = AutoImageProcessor.from_pretrained(model_checkpoint)
|
29 |
-
image_processor
|
30 |
-
|
31 |
-
from torchvision.transforms import (
|
32 |
-
CenterCrop,
|
33 |
-
Compose,
|
34 |
-
Normalize,
|
35 |
-
RandomHorizontalFlip,
|
36 |
-
RandomResizedCrop,
|
37 |
-
Resize,
|
38 |
-
ToTensor,
|
39 |
-
ColorJitter,
|
40 |
-
RandomRotation
|
41 |
-
)
|
42 |
-
|
43 |
-
normalize = Normalize(mean=image_processor.image_mean, std=image_processor.image_std)
|
44 |
-
size = (image_processor.size["height"], image_processor.size["width"])
|
45 |
-
|
46 |
-
train_transforms = Compose(
|
47 |
-
[
|
48 |
-
RandomResizedCrop(size),
|
49 |
-
RandomHorizontalFlip(),
|
50 |
-
RandomRotation(degrees=15),
|
51 |
-
ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1),
|
52 |
-
ToTensor(),
|
53 |
-
normalize,
|
54 |
-
]
|
55 |
-
)
|
56 |
-
|
57 |
-
val_transforms = Compose(
|
58 |
-
[
|
59 |
-
Resize(size),
|
60 |
-
CenterCrop(size),
|
61 |
-
RandomRotation(degrees=15),
|
62 |
-
ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1),
|
63 |
-
ToTensor(),
|
64 |
-
normalize,
|
65 |
-
]
|
66 |
-
)
|
67 |
-
|
68 |
-
def preprocess_train(example_batch):
|
69 |
-
example_batch["pixel_values"] = [
|
70 |
-
train_transforms(image.convert("RGB")) for image in example_batch["image"]
|
71 |
-
]
|
72 |
-
return example_batch
|
73 |
-
|
74 |
-
def preprocess_val(example_batch):
|
75 |
-
example_batch["pixel_values"] = [val_transforms(image.convert("RGB")) for image in example_batch["image"]]
|
76 |
-
return example_batch
|
77 |
-
|
78 |
-
splits = dataset["train"].train_test_split(test_size=0.3)
|
79 |
-
train_ds = splits['train']
|
80 |
-
val_ds = splits['test']
|
81 |
-
|
82 |
-
train_ds.set_transform(preprocess_train)
|
83 |
-
val_ds.set_transform(preprocess_val)
|
84 |
-
|
85 |
-
from transformers import AutoModelForImageClassification, TrainingArguments, Trainer
|
86 |
-
|
87 |
-
model = AutoModelForImageClassification.from_pretrained(model_checkpoint,
|
88 |
-
label2id=label2id,
|
89 |
-
id2label=id2label,
|
90 |
-
ignore_mismatched_sizes=True)
|
91 |
-
|
92 |
-
model_name = model_checkpoint.split("/")[-1]
|
93 |
-
|
94 |
-
args = TrainingArguments(
|
95 |
-
f"{model_name}-finetuned",
|
96 |
-
remove_unused_columns=False,
|
97 |
-
eval_strategy="epoch", # Updated parameter
|
98 |
-
save_strategy="epoch",
|
99 |
-
save_total_limit=5,
|
100 |
-
learning_rate=1e-3,
|
101 |
-
per_device_train_batch_size=batch_size,
|
102 |
-
gradient_accumulation_steps=2,
|
103 |
-
per_device_eval_batch_size=batch_size,
|
104 |
-
num_train_epochs=2,
|
105 |
-
warmup_ratio=0.1,
|
106 |
-
weight_decay=0.01,
|
107 |
-
lr_scheduler_type="cosine",
|
108 |
-
logging_steps=10,
|
109 |
-
load_best_model_at_end=True,
|
110 |
-
metric_for_best_model="accuracy",
|
111 |
-
)
|
112 |
-
|
113 |
-
import numpy as np
|
114 |
-
|
115 |
-
def compute_metrics(eval_pred):
|
116 |
-
"""Computes accuracy on a batch of predictions"""
|
117 |
-
predictions = np.argmax(eval_pred.predictions, axis=1)
|
118 |
-
return metric.compute(predictions=predictions, references=eval_pred.label_ids)
|
119 |
-
|
120 |
-
import torch
|
121 |
-
|
122 |
-
def collate_fn(examples):
|
123 |
-
pixel_values = torch.stack([example["pixel_values"] for example in examples])
|
124 |
-
labels = torch.tensor([example["label"] for example in examples])
|
125 |
-
return {"pixel_values": pixel_values, "labels": labels}
|
126 |
-
|
127 |
-
trainer = Trainer(
|
128 |
-
model=model,
|
129 |
-
args=args,
|
130 |
-
train_dataset=train_ds,
|
131 |
-
eval_dataset=val_ds,
|
132 |
-
tokenizer=image_processor,
|
133 |
-
compute_metrics=compute_metrics,
|
134 |
-
data_collator=collate_fn,
|
135 |
-
)
|
136 |
-
|
137 |
-
print("Starting training...")
|
138 |
-
train_results = trainer.train()
|
139 |
-
print("Training completed.")
|
140 |
-
|
141 |
-
# Save model
|
142 |
-
trainer.save_model()
|
143 |
-
trainer.log_metrics("train", train_results.metrics)
|
144 |
-
trainer.save_metrics("train", train_results.metrics)
|
145 |
-
trainer.save_state()
|
146 |
-
|
147 |
-
print("Starting evaluation...")
|
148 |
-
metrics = trainer.evaluate()
|
149 |
-
print("Evaluation completed.")
|
150 |
-
|
151 |
-
# Log and save metrics
|
152 |
-
trainer.log_metrics("eval", metrics)
|
153 |
-
trainer.save_metrics("eval", metrics)
|
154 |
-
|
155 |
-
# Print evaluation metrics
|
156 |
-
print("Evaluation Metrics:")
|
157 |
-
for key, value in metrics.items():
|
158 |
-
print(f"{key}: {value}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|